
Toward A Software Development Methodology for
Anonymity Applications

Marzieh Ispareh
Dept. of Computer

Engineering
University of Isfahan, Iran

ispareh@eng.ui.ac.ir

Behrouz Tork Ladani
Dept. of Computer

Engineering
University of Isfahan, Iran

ladani@eng.ui.ac.ir

Shirin Shariat Panahi
Dept. of Entrepreneurship

Management
University of Tehran, Iran

Shirin.panahi@ent.ut.ac.ir

Zahra Nasr Azadani
Dept. of Computer

Engineering
University of Isfahan, Iran

znasrazadani@yahoo.com

Abstract

There are some software applications especially in privacy

protection domain which they need anonymity support.

Therefore lots of methods and protocols have been presented so

far for providing this requirement. However no specific

software development methodology has been yet provided for

specification of anonymity requirements and consideration of

anonymity as part of software design and implementation life

cycle. In this paper we present a methodology for development

of anonymity applications. The proposed methodology consists

of three relevant phases named AnoModel, AnoUML, and

AnoAPI. Requirement analysis and specification is based on

AnoModel which is a conceptual model of anonymity. Also

design and implementation phases are partially covered by

AnoUML (which is an extension of UML for supporting

anonymity design elements) and AnoAPI (which is a

programming interface for implementing anonymity primitives)

respectively. To show the applicability of the proposed

methodology, two case studies of using it are presented.

Categories and Subject Descriptors

D.2.1 [SOFTWARE ENGINEERING]: Requirements/

Specifications -- Methodologies; K.4.1 [COMPUTERS AND

SOCIETY]: Public Policy Issues -- Privacy.

Keywords

Anonymity, Software Development Methodology, Anonymity

Application

1. Introduction

Nowadays methods for anonymity providing specially with the

goal of privacy preservation are considered in applications such

as e-voting, e-commerce, etc. However the features of required

anonymity and also the required level of it are various in

different applications. Therefore careful requirement analysis

for determining precise anonymity properties which are suitable

for a service is important. For example designing for complete

anonymity is not the best choice for many applications. In a

system with complete anonymity, tracking the entities is not

possible while correct authentication and tracking is often

essential for the sake of responsibility and accountability [3].

Beside the need for suitable requirement analysis and

specification, having a systematic approach for considering

anonymity requirements in different phases of application

development is of high importance. This is while no serious and

specific work has been reported in this regard.

Different software development methodologies contain

different phases, but most of them use three general phases:

requirement analysis, conceptual design, and implementation

[4]. To cover the first phase of the methodology, we use our

previous work in [5] which is a conceptual model of anonymity.

We call it AnoModel here. AnoModel presents both a

framework for definition of anonymity concepts and taxonomy

of all service types for anonymity and their properties. So this

model can be used for requirement analysis of an extended

variety of anonymity applications.

For the second phase, AnoUML as an extension of UML for

anonymity applications is introduced. This extension suits

AnoModel, so requirement specifications resulted from the first

phase can be modeled using AnoUML. AnoUML helps

designers in simpler, more precise, and systematic design by

focusing on anonymity properties based on AnoModel.

In the third phase, a programming interface for implementing

anonymity primitives in communication layer is introduced. We

call it AnoAPI. AnoAPI is in fact a partial set of software

mechanisms which are used to implement design patterns specified

in AnoUML phase. A prototype of AnoAPI has been implemented

as a java package and contains basic techniques for supporting

anonymity in communication layer. By adding this package in an

anonymity application program and overriding its classes, one can

implement the desired anonymity properties in his/her application.

The rest of paper is structured as follows. In section 2 we have a

short survey on related works, then in section 3 a summary of

our previous work in [5] is presented as AnoModel. Sections 4

and 5 present AnoUML and AnoAPI respectively. Then in

section 6 two case studies on using the proposed methodology

are presented. Finally in section 6 we conclude the paper.

2. Related Works

According to our researches, there is not so many especial

methodology or methodology extension for development of

anonymity applications. The only related work is a

methodology for designing controlled anonymous applications

[6]. In this work, the whole software requirements are classified

in four categories of privacy, control, performance, and trust in

which control and trust are two opposite types of requirements.

The presented methodology consists of multiple models for

privacy, performance and trust and uses several alternatives at

each design step to partially avoid conflicts between

requirements. Moreover, the final model foresees a mapping to

control mechanisms in implementation phase.

A drawback of the methodology presented in [6] is that it has

not considered all aspects of anonymity in the analysis phase.

For example, each anonymity requirement can be just expressed

as expression Unlinkable(a,b) in which a and b are actions or

environment attributes. This way, designers can not analyze and

specify anonymity requirements clearly.

Some other outspread tasks have been done on categorizing

anonymity requirements. In [2], types of anonymity are just

classified based on the information or entities which are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PAIS’10, March 22, 2010, Lausanne, Switzerland.

Copyright 2010 ACM

anonymous. Also in [7] after defining some anonymity

different types of anonymity has been categorized

this work is stronger than other related works, but

for information or entities which become anonymous

in this taxonomy.

3. AnoModel

 In this section we are going to summarize our conceptual model

presented previously in [5]. We call it AnoModel

provides a framework for analysis and specification of anonymity

properties (can be provided by an anonymity technique) or

anonymity requirements (needed for an anonymity application).

To define anonymity, at first we introduce “Identification

Information” or Idinfo in short: Idinfo is data or information

that can be used to indicate the real identity of an entity or her

messages precisely. Idinfo may belong to one entity or a group

of entities. Based on the above definition, different instances of

Idinfo in a system are Entity Idinfo and Message Idinfo.

Different types of Entity Idinfo and Message Idinfo have been

shown in figures 1 and 2 respectively. One can refer to

detailed explanation of the taxonomies.

In each application, depending on application features, different

anonymity requirements are needed. Usually in an application,

multiple entities become anonymous from other entities, so we

need multiple anonymity services. Each anonymity service is a set

of activities which provide a valid combination of inaccessibility to

some Idinfo instances from the viewpoint of other entities. So we

can have two classes of anonymity service: Entity anonymity

services, and Message anonymity services. Based on definition of

Idinfo, each class of anonymity services can be divided into seven

different anonymity types which are presented in Tables

Two entities play the main role in each anonymity

anonymous entity, and anonymity observer i.e.

anonymity occurs from its viewpoint. Anonymous entities can

have two specific properties: Authentication and Reply.

Authentication means that despite an entity is anon

it’s possible to authenticate her and check her

sending messages, access to data objects and so on.

means despite an entity is anonymous, but still

reply her messages.

Each anonymity service can be applied absolutely or

conditionally. In the case of Absolute anonymity,

becomes anonymous without any condition. On the other hand,

in Conditional anonymity, the entity becomes anonymous

condition to satisfying some constraints.

 Fig. 1. Entity Idinfo types

Entity Idinfo

Name Idinfo

Personal Name

Idinfo

Organizational

Name Idinfo

Operation Idinfo

Operator Idinfo

Operation

Coherency Idinfo

Property Idinfo

Inherent Property

Idinfo

Adventitious

Property Idinfo

some anonymity features,

categorized. Although

works, but no clear role

which become anonymous is defined

conceptual model

 here. AnoModel

provides a framework for analysis and specification of anonymity

properties (can be provided by an anonymity technique) or

ity requirements (needed for an anonymity application).

introduce “Identification

Idinfo is data or information

that can be used to indicate the real identity of an entity or her

Idinfo may belong to one entity or a group

of entities. Based on the above definition, different instances of

Idinfo in a system are Entity Idinfo and Message Idinfo.

and Message Idinfo have been

One can refer to [5] for

In each application, depending on application features, different

anonymity requirements are needed. Usually in an application,

ther entities, so we

anonymity service is a set

of activities which provide a valid combination of inaccessibility to

some Idinfo instances from the viewpoint of other entities. So we

service: Entity anonymity

services, and Message anonymity services. Based on definition of

Idinfo, each class of anonymity services can be divided into seven

different anonymity types which are presented in Tables 1 and 2.

anonymity service:

 an entity which

onymous entities can

have two specific properties: Authentication and Reply.

anonymous, still

permissions for

, access to data objects and so on. Reply

still it’s possible to

d absolutely or

Absolute anonymity, entity

becomes anonymous without any condition. On the other hand,

, the entity becomes anonymous

Fig. 2. Message Idinfo

Three kinds of anonymity constraints could be defined:

� Temporal anonymity constraints:

established or preserved based on some temporal conditions

e.g. until when some special event is happen.

� Spatial anonymity constraints: Anonymity is established

or preserved based on some spatial conditions e.g. an agent

is anonymous in hosts with a special (authenticated) ID or

IP address.

� Committed anonymity constraints:

established or preserved so long as entity is

special rules e.g. while she does not received a special

secret token or is obeyed to a certain rule.

Table1: Entity anonymity service

Anonymity type
Name

Idinfo

Property

Idinfo

Without

anonymity
�� ��

EA1 �� ��

EA2 �� �

EA3 �� �

EA4 � ��

EA5 � ��

EA6 � �

EA7

(Full anonymity)
� �

Table 2: Message anonymity service

Anonymity type

Connected entities
Idinfos

Sender

Entity

Idinfo

Receiver

Entity

Idinfo

Without

anonymity
�� ��

MA1 �� �

MA2 � ��

MA3 � �

MA4 �� ��

MA5 �� �

MA6 � ��

MA7

(Full anonymity)
� �

Message

Idinfo

Channel

Idinfo

Message Size

Message

Content

Delay

Message

Order

Message

Route

Connected

Entities Idinfo

Sender Entity

Idinfo

Receiver

Entity Idinfo

Personal Name

Idinfo

Organizational

Name Idinfo

Operator Idinfo

Operation

Coherency Idinfo

Inherent Property

Idinfo

Adventitious

Property Idinfo

 types

Three kinds of anonymity constraints could be defined:

Temporal anonymity constraints: Anonymity is

established or preserved based on some temporal conditions

event is happen.

Anonymity is established

or preserved based on some spatial conditions e.g. an agent

is anonymous in hosts with a special (authenticated) ID or

Committed anonymity constraints: Anonymity is

ished or preserved so long as entity is faithful to some

special rules e.g. while she does not received a special

secret token or is obeyed to a certain rule.

service types

Property

Idinfo

Operation

Idinfo

 ��

 �

 ��

 �

 ��

 �

 ��

 �

service types

Connected entities

Channel
Idinfo

Receiver

Entity

Idinfo

�� ��

� ��

�� ��

� ��

�� �

� �

�� �

� �

Message Size

Message

Content

Delay

Message

Order

Message

Route

Sender Entity

Idinfo

Receiver

Entity Idinfo

So to specify the anonymity requirements of an application we

can follow three following steps: (1) Specification of anonymity

service types, (2) Specification of anonymity structure, i.e. factors

involved in each required service, and (3) Specification of

anonymity constraints, i.e. whether each anonymity service is

conditional or not, and what are those constraints if there is any.

Anonymity requirements or properties could be specified as a

tuple <EA, MA> where EA is the set of Entity Anonymity

services that each of its members is a tuple as follows:

<AE, AO, AnoType, C, Authentication, Reply>

AE is the Anonymous Entity, AO is the Anonymity Observer

entity, AnoType is the type of this anonymity service, C is a set

of constraints; if it is empty, then the anonymity service is

applied absolutely, and Authentication and Reply are Boolean

parameters that indicate whether anonymous entity has those

abilities or not.

MA defines the set of Message Anonymity services that each of

its members is a tuple as follows:

<SE, RE, AO, AnoType, C >

In which SE and RE are communicated entities and other

parameters are the same as EA.

4. AnoUML

In this section we present AnoUML which is an extension of

UML compatible with AnoModel. AnoUML helps designers in

simpler and more systematic design by focusing on anonymity

services, types and the places which they must be deployed.

There are three mechanisms for extending UML [8]:

Stereotypes which allow us to extend the vocabulary of the

UML, Tagged values which allow us to extend the properties of

a UML building block, and Constraints which allow us to

extend the semantics of a UML building block by adding new

rules, or modifying existing ones.

As we told earlier, each anonymity application has two classes

of anonymity requirements:

� Entity anonymity

� Message anonymity

For explaining entity anonymity requirements in AnoUML, We

choose the Use case diagrams. Use case diagrams show

operations of each entity from viewpoint of entities outside the

system. So anonymity of each entity from viewpoint of

anonymity observers can be shown by these diagrams. On the

other hand, message anonymity can be shown by Deployment

diagrams in a subsystem. Each subsystem can contain every

section of UML diagrams. In this case, all the features of

subsystem are applied to all elements inside the subsystem. The

reason for selecting Deployment diagrams is that these

diagrams show the physical relations between different parts of

the system. Besides high architectural level design capability of

Deployment diagram, it’s possible to show the types of

anonymity for relations in system exactly as they must to be.

Stereotypes along with their constrains are shown in table 3.

Tagged Values of each Stereotype with more complete

explanations are presented in Appendix A. We describe

Stereotypes of AnoUML in continue.

Anonymous Actor: This Stereotype is applied on an Actor in

standard UML and it shows that this Actor has a task which

must be done in an anonymous way. The AnoEntityType of this

Stereotype defines the anonymity service types required for this

Actor according to definitions of AnoModel.

Anonymous Observer: This Stereotype is applied on Actor in

standard UML and it shows an observer entity. This Actor can

have no real role in a system. The AnoObserverType of this

Stereotype defines the anonymity service types required for this

Actor according to definitions of AnoModel.

Anonymous Observing: This Stereotype is applied on

Association relation in standard UML and it shows the relation

between the Anonymous observer and a Use case which is

operated anonymously from viewpoint of that observer. The

EnAnoProperty of this Stereotype explains the anonymity

features of this entity.

Sender Server: This Stereotype is applied on Nodes (Servers)

and it defines a system which begins anonymous connection in

Deployment diagram.

Sender Component: Deployed applications on sender servers

which play roles in connection are Stereotypes named Sender

component.

Receiver Server: This Stereotype is applied on Node (Server)

and it defines a host which receives the request for anonymous

connection in Deployment diagram.

Receiver component: Deployed applications on receiver

servers which play roles in connection are Stereotypes with the

name of receiver component.

Anonymizer System: In an anonymity providing system, normally

there is a host for providing anonymous communication. We call

the whole system between sender and receiver which play a role in

providing communication anonymity as Anonymizer System.

Anonymizer System is applied on Node as a Stereotype. The

ServerType of this Stereotype defines type of server. For example it

can be Mix Server, TTP Server (in conditional anonymity) and

Authentication Server (in systems which need authentication

mechanisms).

Mix System: This Stereotype is applied on Package in standard

UML and in Deployment diagram it covers all responsible hosts

for supporting the anonymity (Anonymizer Systems).

UsecaseView: This Stereotype is applied on Use case model.

For each anonymity observer of an anonymous Actor, we

consider one individual Use case diagram that specifies

anonymity type of each Use case of anonymous Actor from

viewpoint of that anonymity observer.

Table 3: AnoUML Stereotypes

Stereotype Base class Tagged value Constraints

Anonymous

Observing

Association EnAnoProperty Connects an anonymity observer

to a Use case

Anonymity

Observer

Actor AnoObserverType Is connected to a Use case via an

Anonymous Observing link

Anonymous

Actor

Actor AnoEntityType Initializes at least one Use case

that is connected to an

Anonymity Observer

Sender

Server

Node - Contains at least one Server

Component

Receiver

Server

Node - Contains at least one Receiver

Component

Anonymizer

Server

Node ServerType -

Sender

Component

component - -

Receiver

Component

component - -

Anonymous

Link

Subsystem MeAnoProperty All network layer

communications of this

subsystem has MeAnoProperty

anonymity type

Mix System Package - Contains only Anonymizer

server

UseCaseView

Diagram

Use case

diagram

- For each anonymity observer of

an Anonymous Actor, we draw

one UseCaseView that specify

anonymity type of each Use case

of anonymous Actor from

viewpoint of that observer

5. AnoAPI

Anonymity properties especially in communication layer usually

contain similar functionalities. By presenting these functionalities

as individual units we can achieve basic anonymity primitives.

Normally anonymity techniques in application layer are complex

solutions for anonymity requirements and can support the

required type of anonymity without mixing with other techniques.

But primitives in communication layer are simpler and should

mix with other techniques to achieve the ability for supporting

anonymity requirements in application. In Appendix B various

techniques of three mentioned classes of anonymity primitives

and the type(s) of anonymity services which could be provided by

primitives are listed.

We consider AnoAPI Java package to contain two base classes

named Send/Receive for sending/receiving the messages. For

each anonymity primitives in communication layer, an abstract

class with required methods and attributes has been defined as

an interface for that anonymity primitive. List of these classes

are as follows:

� EncryptMessage for encrypting technique

� CacheMessage for request caching technique

� CompressMessage for compressing technique

� FilterMessage for filtering technique

� ImpersonateMessage for impersonating and pseudonym

technique

� PadMessage for padding technique

� DelayMessage for adding some random delays and

reordering the messages

Note that service layer techniques which can not be applied on

each packet individually are designed as methods in

Send/Receive classes. These methods are as follows:

� BroadCastPacket for broadcasting the messages in Send class.

� sendMultiPacket and receiveMultiPacket for multiplexing

in Send/Receive class.

� sendBatchPacket for batch sending in Send class

� sendDummy for sending dummy messages in Send class.

6. Case studies
In this section, we show how to use the presented methodology for

requirement analysis of an anonymity application. Also we show

how to use AnoAPI for implementing an anonymity protocol.

6.1 Anonymous Electronic Payment System

Typically in an electronic payment system there are three main

Actors which are seller, buyer and bank. Suppose that it’s

needed to satisfy the following anonymity requirements in an

example system:

� No one can understand who is buying or selling by

monitoring the exchanged messages during a transaction.

Also no one can understand the real identity of seller during

his/her transaction with bank.

� No one can be able to track buyer by relating together their

activities. (Hiding operation coherency Idinfo’s of buyer

during his/her transaction).

� Anonymity of buyers should be such that cheating could be

detectable in certain situations, e.g. when buyer does not

pay on time. So the buyer anonymity is conditional.

� Seller must have the ability to reply anonymous buyers.

� Bank and seller must have the ability to authenticate

anonymous buyers.

According to the above mentioned requirements we can specify

the system requirements as tuple <EA, MA> in which:

 MA = {< Buyer, Seller, global/local observer, MA4, null >,

 < Buyer, Bank, global/local observer, MA4, null >,

 < Seller, Bank, global/local observer, MA4, null >}

MA4 anonymity service type is needed to hide name Idinfo’s

(identity) of buyer from local/global observers during

communication with seller and bank. This way, the identity of

seller should be hidden in communication with bank as well.

EA also could be specified based on the mentioned

requirements as follows:

 EA = { <Buyer, Seller, EA2, {Paid on time}, True, True>,

<Buyer, global observer, EA2, null, False, False >,

<Buyer, local observer, EA2, null, False, False >,

<Buyer, Bank, EA2, null, True, False > }

As it has been shown, both name and operation Idinfo’s of buyer

should be preserved during her transaction from the viewpoint of

all other entities. So the anonymity service type of buyer is EA2.

It should be possible to authenticate the anonymous buyer by

both seller and bank. Seller should be able to answer the

anonymous buyer, and finally buyer will not remain anonymous

for buyer if she doesn’t pay on time. Note that it has been

considered that bank has no direct communication with buyer, so

it’s not needed that bank be able to reply buyer.

To design the system by AnoUML we should notice that buyers

need to be anonymous from sellers, bank and global/local

observers. Therefore we need four Use case diagrams to

represent the required anonymity for buyers operations i.e. Use

case diagrams of buyer anonymity against seller, bank and

global/local observer.

As an instance, we explain the Use case diagram of buyer

anonymity against seller (Figure 3). Buyer in this system should

perform four main tasks: Login to the system, Selection of the

desired goods, Payment, and Logout from the system

In selection of goods, no authentication is needed. Also in all

phases we need to reply to anonymous buyer because buyer

should be able to see her own buying basket.

In payment phase if buyer could not be charged correctly and

ontime, anonymity of buyer will be revoked and tracking buyer

becomes possible. So in payment phase aononymity is applied

in committed and conditional manner.

Deployment diagram as it is shown in figure 4 represents the

required message anonymity type in connection between

system elements. Because we have committed anonymity in

some parts of our system, as a dsign option we could use a

trusted third party in anonymizer system which we show it with

TTP Server. Also because we need authentication mechanisms

we consider authentication server.

Fig. 3. Use Case Diagram of buyer against seller

Fig. 4. Deployment diagram of E-payment system

6.2 Mix-Net protocol

David Chaum has suggested a protocol named Mix-Net for

stablishing an anonymous channel in 1981 [11]. This protocol is

used in different applications like sending anonymous e-mails

or making anonymous connections in ISDN networks. Lots of

anonymous protocols like Web mixe[9], ISDN-Mixes[12], Java

Anon Proxy[10], Stop and Go Mixes[11], and Onion

Routing[22] are based on Mix-Net Protrocol.

In this protocol, each mix has a public key which senders use to

encrypt messages to that mix. The mix accumulates a batch of these

encrypted messages, decrypts them, and delivers them to next

receiver. Because a decrypted output message looks nothing like

the original encrypted input message, and because the mix collects

a batch of messages and then sends out the decrypted messages in a

rearranged order, an observer cannot learn which incoming

message corresponds to which outgoing message. We have

analyzed the properties of this protocol using AnoModel in [5].

This protocol uses methods like batch sending, dummy message,

adding random delays and so on to protect from traffic analysis.

Flowchart of this protocol is shown in figure 5. In this flowchart

gray blocks represent anonymity primitives. We have

implemented this protocol using AnoAPI java package.

7. Conclusion
In this paper a methodology for developing anonymity

applications was presented. The proposed methodology

contains three parts: AnoModel, AnoUML, and AnoAPI to

partially support requirement analysis, design and

implementation of anonymity software development. Some of

the advantages of the proposed methodology in developing

anonymity software are as follows:

� Better understanding of anonymity concepts, properties and

methods

� Better classification and comparison of anonymity services

� Software reuse with optional software components

� Reduction of software development time and cost

� Simpler software design because of separating anonymity

components from other software logic

Also as future works, we plan to do the following activities:

� Formulating the methodology in a more formal manner

� Extending for more fine grained levels of anonymity

� Extending AnoUML to better concentrate on design aspects.

� Extending AnoAPI for supporting anonymity primitives in

application layer.

Fig. 5. Flowchart of Mix Net protocol

8. References
[1] Qing Zhang, “A fair and anonymous E-Commerce

schema”, PhD thesis, university of London, May 2007.

[2] D. Malkhi , “Lecture notes of Anonymity - Advanced
Course in Computer and Network Security”, The Hebrew
University, Jerusalem, May 2002.

[3] Software Engineering Institute, “Results of SEI Independent
Research and Development Projects and Report on Emerging
Technologies and Technology Trends”, Oct. 2004.

[4] Vincent NAESSENS, “A Methodology for anonymity
control in electronic services using credentials”, PhD
thesis, Katholieke Universiteit Leuven, June 2006.

[5] Marzieh Ispareh, Behrouz Tork Ladani, “A Conceptual
Framework for Specification, Analysis, and Design of
anonymity Services”, in Proceedings of the 2nd International
Workshop on Privacy and Anonymity in the Information
Society (PAIS’09), Saint-Petersburg (Russia), March 2009.

[6] V. Naessens, B. De Decker, “A Methodology for Designing
Controlled Anonymous Applications”, In Proceedings of the
21th IFIP International Information Security Conference:
Security and Privacy in Dynamic Environments, May 2006

[7] Bart De Win, et al., “Anonymity and Privacy in Electronic
Services”, APES Project, Deliverable 2 - Requirement
Study of different applications, 2001.

[8] David S. Rosenblum, “Advanced Analysis and Design
Extension Mechanisms for UML”, Available from
http://www.cs.ucl.ac.uk/staff/D.Rosenblum, 2008.

[9] O. Berthold, H. Federrath, and M. Kohntopp, “Project
anonymity and unobservability in the internet”, In Computers
Freedom and Privacy Conference 2000 (CFP 2000)

Workshop on Freedom and Privacy by Design, April 2000.

[10] H. Federrath, “Jap: A Tool for Privacy in the Internet”,
Available from http://anon.inf.tu-dresden.de/indexen.html.

[11] D. Kesdogan, J. Egner, and R. Buschkes,”Stop-and-go-
Mixes Providing Probablilistic Anonymity in An Open
System”, In Information Hiding, April 1998.

[12] A. P_tzmann, B. P_tzmann, and M. Waidner. Isdn-mixes,
“Untraceable Communication with Very Small Bandwidth
Overhead”, In "GI/ITG Conference: Communication in
Distributed Systems", February 1991.

[13] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous
Connections and Onion Routing”, IEEE J. on Selected
Areas in Communication. 1998.

<<Anonymous Link>>
{MeAnonProperty={< Buyer, Seller, global/local observer, MA4, null

>, < Buyer, Bank, global/local observer, MA4, null >, < Bank, Seller,

global/local observer, MA4, null >}}

<<Sender Comp.>>

<<Sender Comp.>>

Buyer

<<Sender Server>>

Mix server

<<Anonymizer

Server>>

Mix server

<<Anonymizer

Server>>

Auth server

<<Anonymizer

Server>>

<<Sender Comp.>>

<<Sender Comp.>>

Buyer

<<Sender Server>>

<<Receiver

Comp.>>

<<Receiver

Comp.>>

Bank

<<Receiver Server>>

<<Receiver

Comp.>>

<<Receiver
Comp.>>

Seller

<<Receiver Server>>

Appendix A. AnoUML Tagged values

Tagged values Constraints and description

EnAnoType Specifies the Entity anonymity type. Based on AnoModel it can has one of the EA1 to EA7 values.

MeAnoType Specifies Message anonymity type. Based on AnoModel it can has one of the MA1 to MA7 values.

EnAnoProperty Specifies all anonymity properties of Entity as a set { EnAnoType , Authentication, Reply, C} in which

EnAnoType shows Entity anonymity type. Other members are as AnoModel.

MeAnoProperty Specifies all anonymity properties of Message as a set {Sender, Receiver, Observer, MeAnoProperty, C} in

which Sender, Receiver, and Observer denotes anonymity of communication between sender and receiver

from the viewpoint of observer. MeAnoProperty shows Message anonymity type and C is anonymity

Constraints.

AnoObserverType Specifies anonymity observer type. Based on AnoModel, it has one of the following values: Sender,

Receiver, Local Observer, Global Observer, Members of anonymity provider system, or Users who have

access to entities information.

AnoEntityType Specifies Anonymous Actor type. Based on AnoModel it can has one of the following values: Sender,

Receiver, or entity which its information is accessible

ServerType Specifies Anonymizer System type. For example it can be TTP Server, Mix Server, Authentication Server,

etc.

Appendix B: Anonymity primitives

Layer Primitive name Description Anonymity service type

Com. Padding Changing the length of packet in route from

receiver to sender

MA4 (Hiding messages length from viewpoint of

network traffic observers).

Dummy message Generating and sending dummy messages MA4 (Hiding messages delay from network traffic

observers).

Reordering

messages

Reordering input messages before sending MA4 (Hiding messages delay and mapping from network

traffic observers).

Batching Storing messages and sending them in batch

with variant delays.

MA4 (Hiding messages delay from network traffic

observers).

Adding random

delays

Adding random delays in sending messages. MA4 (Hiding messages delay from network traffic

observers).

Broadcasting

messages

Broadcasting messages with special format

such that only the real receiver can read it.

MA4 (Hiding receiver properties from network traffic

observers).

Caching messages Caching and automatic answering to similar

requests by anonymizer systems.

MA4 (Hiding messages delay and mapping from network

traffic observers).

Multiplexing Sending multiple messages as one message by

anonymizer system.

MA4 (Hiding messages delay, mapping and content from

network traffic observers).

App. Generalization Replacing an attribute with some general ones
while preserving the correctness of statistics.

Depending on the generalized information, can be one of
EA4, EA3 or EA6 (Hiding owner properties or her name

or both from others).

Blind signature Enabling an entity to sign on a message

without knowing about the content of
message.

Depending on the blinded information, can be one of

EA4, EA3 or EA6 (Hiding sender properties or her name
or both from the signer).

Fair blind

signature

A kind of blind signature with possibility of

linking between original readable message
and corresponding unreadable message.

Like blind signature, but provides conditional anonymity.

Partially blind

signature

A kind of blind signature, but some content of

message may be readable for signer.

Like blind signature, but with partial anonymity of

message content.

Group signature Signing a message without revealing the

identity of signer.

EA4, EA3, EA6 (hiding signer information, name or both

from sender).

Zero knowledge

proof

Proving the awareness of a secret to an entity

without revealing that secret.

EA2 (Hiding entity properties from viewpoint of others).

Both Encryption Hides the mapping between input and output

messages from others.

MA3 (Hiding sender and receiver information from

observers)

Filtering Filtering and omitting the identification

information from messages.

MA3 and EA1 (Hiding name and information of sender

from receiver)

Compression Compressing messages before sending them. MA4 (Hiding the message length and mapping between

them from observers)

Impersonation Replacing and swapping identification

information of different entities.

MA2 (Hiding sender properties from observers)

EA4 (Hiding sender name from receiver)

EA5 (hiding operation coherency from receiver)

EA7 (hiding operation, name and properties of sender

from receiver)

Pseudonym Using alias names for entities. Like Impersonation

