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ABSTRACT 

These days lot of work is been carried out in the field of privacy 

preserving data mining. Apart from the standard techniques of 

privacy preservation, methods are being proposed specific to the 

data mining tasks carried out. However most of these methods 

work on static databases. One such a method is downgrading 

application effectiveness. The effectiveness of applications may 

be downgraded by hiding sensitive association rules, hiding 

sensitive sets of patterns etc. Sometimes although a particular 

pattern is not interesting, its co-occurrence with another pattern 

may reveal certain sensitive information. In this paper we present 

a novel technique to hide sensitive co-occurring sequential 

patterns. The proposed method works on progressive databases. 

Progressive databases are a generalized model of static, dynamic 

and incremental databases. The applicability of the method is also 

extended to suit these different types of databases.   
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1. INTRODUCTION 
Data Mining, better known as knowledge discovery can be 

described as obtaining possibly unseen information from large 

data. This process of analyzing data from different perspectives 

and summarizing it into useful information has a great application 

in the business world. For example, the mined knowledge can be 

used to increase revenue, cut costs or make certain marketing 

decisions. It allows users to analyze data from many different 

dimensions, categorize it, and summarize the relationships 

identified. Technically, data mining can be defined as the process 

of "mining” knowledge from large amounts of data [1]. 

 

Data collection is an important step in data mining. The type of 

database used for storing the collected data, depends upon the 

application of this data. Sometimes the presence of obsolete data 

in the data used for mining may result into erroneous results. 

Progressive databases provide a generalized solution to 

incrementally store all the collected data. These databases allow 

dynamic addition and deletion of data. This avoids re-mining of 

the whole data when new data is added [3]. The static and 

incremental databases are special cases of such databases. As a 

result progressive databases hence have a greater scope for 

application in real world applications. 

Sequential Pattern mining is a commonly used data mining 

technique for business applications. The applications of sequential 

pattern mining are mostly in the fields of targeted marketing, 

promotions and sales, customer retention etc. The use of 

sequential pattern mining over progressive databases enhances the 

applicability of the mining technique since it mines the most 

recent patterns without the side-effects of presence of obsolete 

data. 

Security and privacy are other important issues for any data 

collection method .The collected data is intended to be shared 

used for making strategic decisions. Also, when data is mined for 

applications like customer profiling, medical analysis etc. large 

amounts of sensitive and private data about individuals needs to 

be gathered, stored and processed. Such situations make it 

necessary to maintain the confidentiality of the data in order to 

prevent its illegal access. Sometimes data mining results may also 

disclose some new implicit information about individuals which is 

against privacy policies. For these reasons, privacy preserving 

data mining is essentially a sought after field of research in data 

mining [2]. 

 

A lot of work in the field of privacy preservation has been done. 

Researchers aim to propose generalized methods that could be 

applied to any type of data irrespective of the underlying mining 

technique. Some such methods introduced include randomization, 

l-diversity, k-anonymity, cryptographic techniques etc. However 

some methods are specific to certain types of mining techniques. 

These techniques include query auditing [4], association rule 

hiding [5], frequent itemset hiding [6] etc. These methods can be 

categorized as methods that preserve privacy by downgrading the 

effectiveness of the applications. 

 

This paper proposes a method to hide co-occurring frequent 

patterns while mining for sequential patterns in progressive 

databases. The paper is organized as follows: Section 2 describes 

the problem statement and its related concepts. The base approach 

for blocking co-occurring patterns is discussed in section 3. The 

proposed work and its integration with its integration with an 
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algorithm that mines sequential patterns on progressive databases 

have been discussed in Section 4. Section 5 discusses results and 

certain performance issues with respect to the proposed algorithm. 

The concluding remarks in the work are discussed in Section 6 

with certain ideas for further enhancements. 

2. RELATED WORK 

2.1 Problem Statement 
Sometimes although a particular pattern is not interesting, its co-

occurrence with another pattern may reveal certain sensitive 

information. Suppressing or blocking frequent patterns are the 

two methods that have been proposed in order to deal with this 

problem. One such approach has been discussed by O.Abul in [6]. 

The method proposed here is however applicable only to static 

databases. Databases that are progressive in nature are more 

generalized and hence the methods proposed for static databases 

need not be always applicable. The limitations of these kinds of 

databases are that they require dynamic processing since they deal 

with frequently updating data. Also the memory constraints do not 

allow storage of a large amount of data. Due to this there is a need 

for a dynamic method for hiding co-occurring patterns. 

 

The method proposed here suppresses co-occurring frequent 

patterns by blocking some of the sensitive patterns over 

progressive databases. As a result if pattern set P = (A, B) is 

sensitive, the proposed method blocks either A or B; avoiding 

both A and B to be frequent together at a particular time instance. 

This avoids the co-occurrence of A, B as frequent patterns at a 

particular timestamp. This algorithm works on progressive 

databases and hence can work with any type of databases, be it 

static, dynamic or incremental and can be said to be based on the 

idea proposed in [6]. 

 

An application of this can be in strategic marketing. For example 

if many superstores wish to mine global shopping patterns across 

all their customer transaction databases, they would require a 

privacy preservation mechanism to keep intact the privacy of the 

data they are sharing. Also a particular party may consider the co-

occurrence of a particular pattern set as sensitive (may be for 

promotional / sales reasons) and would not be interested in 

sharing this pattern, if it occurs, with other parties. As a result the 

global patterns published would contain only certain patterns from 

the sensitive set but never the whole set. 

2.2 Preliminaries 
Frequent sequential pattern mining, commonly known as 

sequential pattern mining, was first addressed in [7] by R. 

Agrawal and R. Srikant as the problem: “Given a database of 

sequences, where each sequence consists of a list of ordered item 

sets containing a set of different items, and a user defined 

minimum support threshold, sequential pattern mining finds all 

subsequences whose occurrence frequencies are no less than the 

threshold from the set of sequences”. This term sequence can be 

more formally described as: 

Definition 1: Let Χ ={x1, x2, x3… xn} be a set of different items. An 

element e, denoted by < x1, x2,.  . .>, is a subset of items belonging 

to Χ which appear at the same time. A sequence s, denoted by < e1 

; e2 ; . . . ; em > , is an ordered list of elements. A sequence 

database DB contains a set of sequences, and | DB | represents the 

number of sequences. in DB. A sequence α = < a1 ; a2 ; . . . ; an > 

is a subsequence of another sequence β =< b1 ; b2 ; . . . ; bm > if 

there exist a set of integers, 1 ≤ i1  ≤  i2 ≤  in  ≤ m, such that a1 is a  

subset of bi1; a2  is a subset of bi2 ; .. . and an  is a subset of  bin 

[3]. 

In case of progressive databases, it is required that the obsolete 

data is pruned out of the database and only recent, updated 

information remains in the database. The time period under study 

id thus called the Period of Interest. It is can be represented as: 

Definition 2: Period of Interest (POI) is a sliding window. The 

length of the POI is a user specified time interval. The sequences 

having elements whose timestamps fall into this period POI, 

contribute to | DB | for sequential patterns generated at that 

timestamp. On the other hand, the sequences having elements 

with timestamps older than those in the POI are pruned away from 

the sequence database immediately and do not contribute to the | 

DB | thereafter [3]. This is illustrated in Fig.1. 

 

 

Figure 1: Sample Database 

 

Another concept to be borrowed from association rule hiding, 

frequent itemset hiding can be described as: 

Definition 3: Let Χ ={x1, x2, x3… xn} be the set of itemsets to be 

hidden from C .Given a threshold α the frequent itemset hiding 

problem requires to transform the database D into a database D’ 

such that: 

SupportD’(xi) < α  and 

| SupportD(xi)-SupportD’(xi)|   is minimized 

The first requirement asks for lowering the support of sensitive 

itemsets below a level, so the receiver of D’ can not mine any of 

the sensitive itemsets at support cnt = α. The second requirement 

is the minimization objective which claims for solutions 

destroying supports of itemsets as less as possible [6]. 

3. PROPOSED WORK 
The proposed method blocks the co-occurrence of sets of patterns, 

the occurrence of which is considered sensitive. The method 

maintains information each set of patterns considered sensitive in 

a structure called blockSet. The blockSet maintains updated 

information about the status of all patterns, along with their 

support counts. The threshFlg associated with each pattern 

indicates whether the support of a particular pattern has crossed 

the threshold value. The algorithm updates the status of the 

pattern status if the support count of a pattern in the blockSet, 



changes. The support count of the pattern changes when an 

instance of that pattern occurs in the database. The method can be 

briefly explained as follows: The algorithm identifies each 

occurrence of a sensitive pattern in the database. Every occurrence 

of the sensitive pattern is thus noted in order to keep track of the 

support count of the pattern. When the support count of a pattern 

crosses the threshold, the threshFlg of that particular pattern is 

set. The set status of the threshFlg indicates that the co-occurrence 

of this pattern may reveal some sensitive information. 

 

While updating the support count of a sensitive pattern, the 

algorithm checks for the support counts of other patterns in the 

same set. If all of the patterns except the pattern under 

consideration are already frequent, i.e their support counts have 

already crossed the threshold, this current occurrence of the 

pattern is ignored. In other words this pattern is blocked. 

Incrementing the support count of this pattern would result into 

the co-occurrence of all the patterns in that blockSet, and hence 

revealing some sensitive information. On the other hand, if not all 

patterns in the blockSet are infrequent, the occurrence of the 

pattern is acknowledged and the support count of the pattern is 

increased. The threshFlg of the pattern is updated in case the 

support count crosses the threshold. This is algorithmically 

expressed in Fig 2.Here bthresh is the blocking threshold, which 

indicates the maximum value of the support count beyond which 

the pattern may be a candidate for blocking.  

 

 

Figure 2: Procedure hidingCo-occurringPatterns 

4. INTEGRATING CO-OCCURRENCE 

BLOCKING WITH PROGRESSIVE 

SEQUENTIAL PATTERN MINING 
In this section we apply the concept proposed in the previous 

section to a sequential pattern mining algorithm over progressive 

databases. The algorithm used for progressive sequential pattern 

mining is PISA [3].The algorithm hence obtained by merging the 

two ideas, progressively mines patterns and blocks the co-

occurrence of patterns in sensitive sets. 

 

 The algorithm is described in Fig.3. At the beginning of the 

algorithm, the algorithm gathers information about the sets of 

patterns whose co-occurrence is considered sensitive in a data  

 

Figure 3: Algorithm co-occurBlock 

 

 

Figure 4: Procedure Insert 

Procedure insert (Tc , Mtree) 

for (each node of Mtree in post order) 

  if (node is Root node) 

    for (ele of every seq in eleSet) 

       for (all combination of elements in ele)     

 if( element ==label of one of node.child) 

   if (seq is in node.child.seq_list) 

      update timestamp of seq to Tc; 

           else 

     create a new sequence with timestamp = Tc; 

 else   // create a child node 

             create child node with element, seq, timestamp = Tc; 

 else  //  for a common node  

    for (every seq in the seq_list) 

       if (seq.timestamp <= Tc - POI)   

          delete seq from seq_list and move to next seq; 

       if (there is new ele of seq in eleSet) 

 for  (all combinations of elements in ele) 

    if (element is not on the path from Root) 

       if (element == label of one of node.child) 

          if(seq is in node.child.seq_list)  

            child.seq_list.seq.timestamp = node.seq.timestamp; 

         else 

                    if (node.child.bcandid =1) 

              find set corresponding to pattern in blockSet; 

                      if  (threshFlg of not more than n-2 elements in the  set is set) 

                 create new sequence with timestamp = seq.timestamp, 

                update pattern.threshFlg; 

              else 

                 block sequence                   

              else 

                 create new sequence with timestamp = seq.timestamp,                 

    else  //create a child 

       create a new child with element,seq, timestamp =  

             seq, timestamp.  

if  (path from Root to node lies in blockSet) 

child.bcandid =1; 

  if  (seq_list.size ==0) 

    delete this node and all of its children from its parent; 

if (seq_list.size>=support*sequence number) 

  output labels of path from Root to this node as sequence pattern; 

End 

Algorithm co-occurBlock( minSup, poi) 

Var currentTime; 

Var thresh; 

Var blockSet; 

Mtree root; 

while ( there is new data in the Db) 

 Ele = Data obtained at current timestamp. 

 bthresh = |Db|* minSup; 

 for ( every pattern in every set in blockSet) 

  prune obsolete sequences 

  if ( pattern.support < bthresh) 

         reset pattern.threshFlg; 

        insert (root,Ele); 

 currentTime ++; 

End 

Procedure hidingCo-occurring Patterns( blockSet ) 

For (every element in the dataset) 

    if (element creates pattern that exists in blockSet ) 

        add element and set pattern.bcandid = 1; 

        if (  new instance of the pattern exists) 

    if ( pattern.bcandid ==1) 

               if (pattern.support > threshold for rest n-1 patterns in set) 

                   block sequence; 

 else 

    add sequence; 

                   if(pattern.support >=bthresh) 

         pattern.threshFlg =1; 

End 



 

Figure 5: Sample working of procedure insert (with blockSet  as null) 

 

structures called blockSets. (described in Section 3). At every 

timestamp the algorithm computes the threshold, to determine if 

the support count of a pattern is large enough to be considered 

as a frequent pattern. The threshold of a pattern is calculated as 

the number of distinct sequences present in the database 

multiplied by the minimum support. The data about support 

counts of patterns in the blockSet is also updated so as to prune 

the obsolete sequences and update values of the corresponding 

thresh’s fiags. The algorithm then extracts data from the 

database corresponding to the current timestamp and integrates 

it into the data structure used for storing candidate patterns 

(Mtree).The method of assimilation of data into the Mtree and 

the corresponding procedure for blocking is explained in Fig. 4. 

 

Whenever a series of elements appear in a sequence (refer SID 

in Fig.1), path from the root is created labeled by the respective 

elements of the pattern with the corresponding sequence number 

on which this pattern occurred. This path from root to node 

called a candidate pattern. If this pattern exists in the blockSet, 

the bcandid field of the last node in the pattern is set to 1, 

indicating that the sequences occurring at this node may be 

blocked in order to suppress co-occurrence of sensitive patterns.  

If a path already exists the concerned fields of the nodes are 

updated with the respective information. The timestamp for each 

node of the candidate sequential pattern is marked according to 

timestamp of the starting element of the candidate pattern. While 

adding sequences to nodes with bcandid value set, the procedure 

first checks for the values of threshFlg of other patterns in the 

set. If the threshFlg of not more than n-2 patterns in a set are 1 

then the pattern adds the sequence else blocks the sequence. An 

obsolete element (i.e. element which lies out of the POI) and a 

node having no sequence numbers in its sequence list are pruned 

from the sequence list of the node and the Mtree respectively, 

ensuring only up to date candidate patterns in the Mtree. 

 

After all the candidate sequential patterns are generated, the 

algorithm checks for the number of sequence IDs in a sequence 

list of all nodes. If the number of sequence IDs in a particular 

node is larger than minimum support multiplied number of 

sequences in the current POI, the path from the root till that 

node is considered as a frequent sequential pattern. 

5. RESULTS AND DISCUSSION 
The results are computed for a synthetic dataset [7] with 

300 sequences and 30 records. These results are compared with 

the results of frequent itemset hiding. It is seen that the results 

(Fig. 6) are better since the number of patterns suppressed using 

frequent pattern /item set hiding are n times that of the proposed 

method, where n is the number of patterns in the set. Also the 

number of patterns which get blocked due to the by blocking the 

patterns in a set of patterns, also reduces by a factor of n. Fig. 7 

compares the number of patterns reconstructed in with the 

increase in the size of the set to be blocked. 

 

No of 

blocking 

sets 

 % ge of 

patterns mined after 

co-occurrence 

blocking 

%ge of patterns 

mined after frequent 

itemset hiding 

 At 

ts =15 

At 

ts = 30 

At ts 

= 15 

At ts 

= 30 

1 98 99.4 97.4 98.8 

2 89 91 79 83.8 

3 81 83 62 67.6 

 

Figure 6: Comparison of co-occurrence pattern blocking 

algorithm with frequent pattern hiding 
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Figure 7: Number of patterns reconstructed with size of 

blocking set 

 

Unlike the other approaches to blocking co-occurring frequent 

sequential patterns, this approach dynamically chooses the 

pattern to be suppressed. Hence, the constraint 2 mentioned in 

Definition 3 cannot be applicable in this scenario. Moreover the 



percentage of supersets of patterns blocked as a result of 

blocking a particular pattern also depends upon the pattern that 

is blocked. 

6. CONCLUSIONS 
The proposed method presents a novel technique to downgrade 

the effectiveness of a group of sensitive patterns over 

progressive databases. As compared to the previous methods of 

suppressing frequent sensitive patterns by manipulating support 

counts, the approach presented in this paper avoids the co-

occurrence of sensitive frequent patterns by suppressing one of 

the patterns and keeping it from being frequent. The pattern to 

be suppressed is selected at runtime. Since this method blocks 

only a single pattern in order to avoid co-occurrence, the 

number of consequently suppressed sequences is limited. 

However the dynamic choice of the pattern to be blocked may 

also serve as a limitation in certain cases. But this limitation can 

be overlooked keeping in mind the generalized nature and 

corresponding limitations of progressive databases. 

 This area can be further explored in order to develop methods 

to select the pattern to be blocked. This will enable to keep a 

check on the number of patterns lost in case of a wrong choice 

of pattern to be blocked. 
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