
Hiding Co-occurring Sensitive Patterns in Progressive

Databases
Amruta Mhatre

Dept. of Computer Science and Engg
Indian Institute of Techniology, Roorkee,

Uttarakhand, India. 247667

amruta.01@gmail.com

Durga Toshniwal
Dept. of Computer Science and Engg

Indian Institute of Techniology, Roorkee,

Uttarakhand, India. 247667

durgatoshniwal@gmail.com

ABSTRACT

These days lot of work is been carried out in the field of privacy

preserving data mining. Apart from the standard techniques of

privacy preservation, methods are being proposed specific to the

data mining tasks carried out. However most of these methods

work on static databases. One such a method is downgrading

application effectiveness. The effectiveness of applications may

be downgraded by hiding sensitive association rules, hiding

sensitive sets of patterns etc. Sometimes although a particular

pattern is not interesting, its co-occurrence with another pattern

may reveal certain sensitive information. In this paper we present

a novel technique to hide sensitive co-occurring sequential

patterns. The proposed method works on progressive databases.

Progressive databases are a generalized model of static, dynamic

and incremental databases. The applicability of the method is also

extended to suit these different types of databases.

Keywords

Data mining, sequential pattern mining, co-occurrence hiding,

progressive databases.

1. INTRODUCTION
Data Mining, better known as knowledge discovery can be

described as obtaining possibly unseen information from large

data. This process of analyzing data from different perspectives

and summarizing it into useful information has a great application

in the business world. For example, the mined knowledge can be

used to increase revenue, cut costs or make certain marketing

decisions. It allows users to analyze data from many different

dimensions, categorize it, and summarize the relationships

identified. Technically, data mining can be defined as the process

of "mining” knowledge from large amounts of data [1].

Data collection is an important step in data mining. The type of

database used for storing the collected data, depends upon the

application of this data. Sometimes the presence of obsolete data

in the data used for mining may result into erroneous results.

Progressive databases provide a generalized solution to

incrementally store all the collected data. These databases allow

dynamic addition and deletion of data. This avoids re-mining of

the whole data when new data is added [3]. The static and

incremental databases are special cases of such databases. As a

result progressive databases hence have a greater scope for

application in real world applications.

Sequential Pattern mining is a commonly used data mining

technique for business applications. The applications of sequential

pattern mining are mostly in the fields of targeted marketing,

promotions and sales, customer retention etc. The use of

sequential pattern mining over progressive databases enhances the

applicability of the mining technique since it mines the most

recent patterns without the side-effects of presence of obsolete

data.

Security and privacy are other important issues for any data

collection method .The collected data is intended to be shared

used for making strategic decisions. Also, when data is mined for

applications like customer profiling, medical analysis etc. large

amounts of sensitive and private data about individuals needs to

be gathered, stored and processed. Such situations make it

necessary to maintain the confidentiality of the data in order to

prevent its illegal access. Sometimes data mining results may also

disclose some new implicit information about individuals which is

against privacy policies. For these reasons, privacy preserving

data mining is essentially a sought after field of research in data

mining [2].

A lot of work in the field of privacy preservation has been done.

Researchers aim to propose generalized methods that could be

applied to any type of data irrespective of the underlying mining

technique. Some such methods introduced include randomization,

l-diversity, k-anonymity, cryptographic techniques etc. However

some methods are specific to certain types of mining techniques.

These techniques include query auditing [4], association rule

hiding [5], frequent itemset hiding [6] etc. These methods can be

categorized as methods that preserve privacy by downgrading the

effectiveness of the applications.

This paper proposes a method to hide co-occurring frequent

patterns while mining for sequential patterns in progressive

databases. The paper is organized as follows: Section 2 describes

the problem statement and its related concepts. The base approach

for blocking co-occurring patterns is discussed in section 3. The

proposed work and its integration with its integration with an

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PAIS ‘10, March 22, 2010, Lausanne, Switzerland.

Copyright 2010 ACM.

algorithm that mines sequential patterns on progressive databases

have been discussed in Section 4. Section 5 discusses results and

certain performance issues with respect to the proposed algorithm.

The concluding remarks in the work are discussed in Section 6

with certain ideas for further enhancements.

2. RELATED WORK

2.1 Problem Statement
Sometimes although a particular pattern is not interesting, its co-

occurrence with another pattern may reveal certain sensitive

information. Suppressing or blocking frequent patterns are the

two methods that have been proposed in order to deal with this

problem. One such approach has been discussed by O.Abul in [6].

The method proposed here is however applicable only to static

databases. Databases that are progressive in nature are more

generalized and hence the methods proposed for static databases

need not be always applicable. The limitations of these kinds of

databases are that they require dynamic processing since they deal

with frequently updating data. Also the memory constraints do not

allow storage of a large amount of data. Due to this there is a need

for a dynamic method for hiding co-occurring patterns.

The method proposed here suppresses co-occurring frequent

patterns by blocking some of the sensitive patterns over

progressive databases. As a result if pattern set P = (A, B) is

sensitive, the proposed method blocks either A or B; avoiding

both A and B to be frequent together at a particular time instance.

This avoids the co-occurrence of A, B as frequent patterns at a

particular timestamp. This algorithm works on progressive

databases and hence can work with any type of databases, be it

static, dynamic or incremental and can be said to be based on the

idea proposed in [6].

An application of this can be in strategic marketing. For example

if many superstores wish to mine global shopping patterns across

all their customer transaction databases, they would require a

privacy preservation mechanism to keep intact the privacy of the

data they are sharing. Also a particular party may consider the co-

occurrence of a particular pattern set as sensitive (may be for

promotional / sales reasons) and would not be interested in

sharing this pattern, if it occurs, with other parties. As a result the

global patterns published would contain only certain patterns from

the sensitive set but never the whole set.

2.2 Preliminaries
Frequent sequential pattern mining, commonly known as

sequential pattern mining, was first addressed in [7] by R.

Agrawal and R. Srikant as the problem: “Given a database of

sequences, where each sequence consists of a list of ordered item

sets containing a set of different items, and a user defined

minimum support threshold, sequential pattern mining finds all

subsequences whose occurrence frequencies are no less than the

threshold from the set of sequences”. This term sequence can be

more formally described as:

Definition 1: Let Χ ={x1, x2, x3… xn} be a set of different items. An

element e, denoted by < x1, x2,. . .>, is a subset of items belonging

to Χ which appear at the same time. A sequence s, denoted by < e1

; e2 ; . . . ; em > , is an ordered list of elements. A sequence

database DB contains a set of sequences, and | DB | represents the

number of sequences. in DB. A sequence α = < a1 ; a2 ; . . . ; an >

is a subsequence of another sequence β =< b1 ; b2 ; . . . ; bm > if

there exist a set of integers, 1 ≤ i1 ≤ i2 ≤ in ≤ m, such that a1 is a

subset of bi1; a2 is a subset of bi2 ; .. . and an is a subset of bin

[3].

In case of progressive databases, it is required that the obsolete

data is pruned out of the database and only recent, updated

information remains in the database. The time period under study

id thus called the Period of Interest. It is can be represented as:

Definition 2: Period of Interest (POI) is a sliding window. The

length of the POI is a user specified time interval. The sequences

having elements whose timestamps fall into this period POI,

contribute to | DB | for sequential patterns generated at that

timestamp. On the other hand, the sequences having elements

with timestamps older than those in the POI are pruned away from

the sequence database immediately and do not contribute to the |

DB | thereafter [3]. This is illustrated in Fig.1.

Figure 1: Sample Database

Another concept to be borrowed from association rule hiding,

frequent itemset hiding can be described as:

Definition 3: Let Χ ={x1, x2, x3… xn} be the set of itemsets to be

hidden from C .Given a threshold α the frequent itemset hiding

problem requires to transform the database D into a database D’

such that:

SupportD’(xi) < α and

| SupportD(xi)-SupportD’(xi)| is minimized

The first requirement asks for lowering the support of sensitive

itemsets below a level, so the receiver of D’ can not mine any of

the sensitive itemsets at support cnt = α. The second requirement

is the minimization objective which claims for solutions

destroying supports of itemsets as less as possible [6].

3. PROPOSED WORK
The proposed method blocks the co-occurrence of sets of patterns,

the occurrence of which is considered sensitive. The method

maintains information each set of patterns considered sensitive in

a structure called blockSet. The blockSet maintains updated

information about the status of all patterns, along with their

support counts. The threshFlg associated with each pattern

indicates whether the support of a particular pattern has crossed

the threshold value. The algorithm updates the status of the

pattern status if the support count of a pattern in the blockSet,

changes. The support count of the pattern changes when an

instance of that pattern occurs in the database. The method can be

briefly explained as follows: The algorithm identifies each

occurrence of a sensitive pattern in the database. Every occurrence

of the sensitive pattern is thus noted in order to keep track of the

support count of the pattern. When the support count of a pattern

crosses the threshold, the threshFlg of that particular pattern is

set. The set status of the threshFlg indicates that the co-occurrence

of this pattern may reveal some sensitive information.

While updating the support count of a sensitive pattern, the

algorithm checks for the support counts of other patterns in the

same set. If all of the patterns except the pattern under

consideration are already frequent, i.e their support counts have

already crossed the threshold, this current occurrence of the

pattern is ignored. In other words this pattern is blocked.

Incrementing the support count of this pattern would result into

the co-occurrence of all the patterns in that blockSet, and hence

revealing some sensitive information. On the other hand, if not all

patterns in the blockSet are infrequent, the occurrence of the

pattern is acknowledged and the support count of the pattern is

increased. The threshFlg of the pattern is updated in case the

support count crosses the threshold. This is algorithmically

expressed in Fig 2.Here bthresh is the blocking threshold, which

indicates the maximum value of the support count beyond which

the pattern may be a candidate for blocking.

Figure 2: Procedure hidingCo-occurringPatterns

4. INTEGRATING CO-OCCURRENCE

BLOCKING WITH PROGRESSIVE

SEQUENTIAL PATTERN MINING
In this section we apply the concept proposed in the previous

section to a sequential pattern mining algorithm over progressive

databases. The algorithm used for progressive sequential pattern

mining is PISA [3].The algorithm hence obtained by merging the

two ideas, progressively mines patterns and blocks the co-

occurrence of patterns in sensitive sets.

 The algorithm is described in Fig.3. At the beginning of the

algorithm, the algorithm gathers information about the sets of

patterns whose co-occurrence is considered sensitive in a data

Figure 3: Algorithm co-occurBlock

Figure 4: Procedure Insert

Procedure insert (Tc , Mtree)

for (each node of Mtree in post order)

 if (node is Root node)

 for (ele of every seq in eleSet)

 for (all combination of elements in ele)

 if(element ==label of one of node.child)

 if (seq is in node.child.seq_list)

 update timestamp of seq to Tc;

 else

 create a new sequence with timestamp = Tc;

 else // create a child node

 create child node with element, seq, timestamp = Tc;

 else // for a common node

 for (every seq in the seq_list)

 if (seq.timestamp <= Tc - POI)

 delete seq from seq_list and move to next seq;

 if (there is new ele of seq in eleSet)

 for (all combinations of elements in ele)

 if (element is not on the path from Root)

 if (element == label of one of node.child)

 if(seq is in node.child.seq_list)

 child.seq_list.seq.timestamp = node.seq.timestamp;

 else

 if (node.child.bcandid =1)

 find set corresponding to pattern in blockSet;

 if (threshFlg of not more than n-2 elements in the set is set)

 create new sequence with timestamp = seq.timestamp,

 update pattern.threshFlg;

 else

 block sequence

 else

 create new sequence with timestamp = seq.timestamp,

 else //create a child

 create a new child with element,seq, timestamp =

 seq, timestamp.

if (path from Root to node lies in blockSet)

child.bcandid =1;

 if (seq_list.size ==0)

 delete this node and all of its children from its parent;

if (seq_list.size>=support*sequence number)

 output labels of path from Root to this node as sequence pattern;

End

Algorithm co-occurBlock(minSup, poi)

Var currentTime;

Var thresh;

Var blockSet;

Mtree root;

while (there is new data in the Db)

 Ele = Data obtained at current timestamp.

 bthresh = |Db|* minSup;

 for (every pattern in every set in blockSet)

 prune obsolete sequences

 if (pattern.support < bthresh)

 reset pattern.threshFlg;

 insert (root,Ele);

 currentTime ++;

End

Procedure hidingCo-occurring Patterns(blockSet)

For (every element in the dataset)

 if (element creates pattern that exists in blockSet)

 add element and set pattern.bcandid = 1;

 if (new instance of the pattern exists)

 if (pattern.bcandid ==1)

 if (pattern.support > threshold for rest n-1 patterns in set)

 block sequence;

 else

 add sequence;

 if(pattern.support >=bthresh)

 pattern.threshFlg =1;

End

Figure 5: Sample working of procedure insert (with blockSet as null)

structures called blockSets. (described in Section 3). At every

timestamp the algorithm computes the threshold, to determine if

the support count of a pattern is large enough to be considered

as a frequent pattern. The threshold of a pattern is calculated as

the number of distinct sequences present in the database

multiplied by the minimum support. The data about support

counts of patterns in the blockSet is also updated so as to prune

the obsolete sequences and update values of the corresponding

thresh’s fiags. The algorithm then extracts data from the

database corresponding to the current timestamp and integrates

it into the data structure used for storing candidate patterns

(Mtree).The method of assimilation of data into the Mtree and

the corresponding procedure for blocking is explained in Fig. 4.

Whenever a series of elements appear in a sequence (refer SID

in Fig.1), path from the root is created labeled by the respective

elements of the pattern with the corresponding sequence number

on which this pattern occurred. This path from root to node

called a candidate pattern. If this pattern exists in the blockSet,

the bcandid field of the last node in the pattern is set to 1,

indicating that the sequences occurring at this node may be

blocked in order to suppress co-occurrence of sensitive patterns.

If a path already exists the concerned fields of the nodes are

updated with the respective information. The timestamp for each

node of the candidate sequential pattern is marked according to

timestamp of the starting element of the candidate pattern. While

adding sequences to nodes with bcandid value set, the procedure

first checks for the values of threshFlg of other patterns in the

set. If the threshFlg of not more than n-2 patterns in a set are 1

then the pattern adds the sequence else blocks the sequence. An

obsolete element (i.e. element which lies out of the POI) and a

node having no sequence numbers in its sequence list are pruned

from the sequence list of the node and the Mtree respectively,

ensuring only up to date candidate patterns in the Mtree.

After all the candidate sequential patterns are generated, the

algorithm checks for the number of sequence IDs in a sequence

list of all nodes. If the number of sequence IDs in a particular

node is larger than minimum support multiplied number of

sequences in the current POI, the path from the root till that

node is considered as a frequent sequential pattern.

5. RESULTS AND DISCUSSION
The results are computed for a synthetic dataset [7] with

300 sequences and 30 records. These results are compared with

the results of frequent itemset hiding. It is seen that the results

(Fig. 6) are better since the number of patterns suppressed using

frequent pattern /item set hiding are n times that of the proposed

method, where n is the number of patterns in the set. Also the

number of patterns which get blocked due to the by blocking the

patterns in a set of patterns, also reduces by a factor of n. Fig. 7

compares the number of patterns reconstructed in with the

increase in the size of the set to be blocked.

No of

blocking

sets

 % ge of

patterns mined after

co-occurrence

blocking

%ge of patterns

mined after frequent

itemset hiding

 At

ts =15

At

ts = 30

At ts

= 15

At ts

= 30

1 98 99.4 97.4 98.8

2 89 91 79 83.8

3 81 83 62 67.6

Figure 6: Comparison of co-occurrence pattern blocking

algorithm with frequent pattern hiding

145

150

155

160

165

170

1 2 3 4

No of patterns to be

blocked

N
o

 o
f

p
a
tt

e
rn

s

re
c
o

n
s
tr

u
c
te

d

using co-

occurBlo

ck

using

frequent

itemset

Figure 7: Number of patterns reconstructed with size of

blocking set

Unlike the other approaches to blocking co-occurring frequent

sequential patterns, this approach dynamically chooses the

pattern to be suppressed. Hence, the constraint 2 mentioned in

Definition 3 cannot be applicable in this scenario. Moreover the

percentage of supersets of patterns blocked as a result of

blocking a particular pattern also depends upon the pattern that

is blocked.

6. CONCLUSIONS
The proposed method presents a novel technique to downgrade

the effectiveness of a group of sensitive patterns over

progressive databases. As compared to the previous methods of

suppressing frequent sensitive patterns by manipulating support

counts, the approach presented in this paper avoids the co-

occurrence of sensitive frequent patterns by suppressing one of

the patterns and keeping it from being frequent. The pattern to

be suppressed is selected at runtime. Since this method blocks

only a single pattern in order to avoid co-occurrence, the

number of consequently suppressed sequences is limited.

However the dynamic choice of the pattern to be blocked may

also serve as a limitation in certain cases. But this limitation can

be overlooked keeping in mind the generalized nature and

corresponding limitations of progressive databases.

 This area can be further explored in order to develop methods

to select the pattern to be blocked. This will enable to keep a

check on the number of patterns lost in case of a wrong choice

of pattern to be blocked.

7. REFERENCES
[1] J.Han and M.Kamber, “Data Mining: Concepts and

Techniques”, Series Editor Morgan Kaufmann Publishers,

ISBN 1-55860-489-8, 2000.

[2] V.S. Verykios, E. Bertino, I.N. Fovino, L.P. Provenza, Y.

Saygin, and Y. Theodoridis, “State-of-the-Art in Privacy

Preserving Data Mining,” ACM SIGMOD Record, Vol. 3,

No. 1, pp. 50 - 57, 2004.

[3] J.W Huang, C.Y.Tseng, J.C Ou, and M. S.Chen, “A

General Model for Sequential Pattern Mining with a

Progressive Database,” IEEE Transactions on Knowledge

and Data Engineering, Vol. 20, No. 9, pp. 1153 - 1167,

2008.

[4] Verykios V. S., Elmagarmid A., Bertino E., Saygin Y.,,

Dasseni E.: Association Rule Hiding. IEEE Transactions

on Knowledge and Data Engineering, 16(4), 2004.

[5] Adam N., Wortmann J. C.: Security-Control Methods for

Statistical Databases: A Comparison Study.

ACMComputing Surveys, 21(4), 1989.

[6] O. Abul. “Hiding Co-Occurring Frequent Itemsets,” 2nd

Intl Workshop on Privacy and Anonymity in the Info.

Soc. (PAIS’09), Russia, 2009.

[7] http://www.datasetgenerator.com/

http://www.datasetgenerator.com/

