Key escrow schemes with sliding window for
privacy-aware anomaly detection system

Esa Hyytié*

lvan Gojmerac

Telecommunications Research Telecommunications Research

Center Vienna (FTW), Austria
esa.hyytia@tkk.fi

Simone Teofili
University of Rome “Tor
Vergata”, Italy

Center Vienna (FTW), Austria

gojmerac@ftw.at

Giuseppe Bianchi
University of Rome “Tor
Vergata”, Italy

simone.teofili@uniroma2.it giuseppe.bianchi@uniromaz2.it

ABSTRACT

Requirements for a traffic monitoring system can be very
demanding as both privacy and performance aspects have
to be taken into account jointly. Moreover, the legislation
sets forth strict rules that must also be met. Various crypto-
graphic primitives provide invaluable tools for realising pri-
vacy enforcing mechanisms in such a system with respect
to the above mentioned goals. In this paper, we consider
an arbitrary traffic anomaly detection system consisting of
two stages. The first stage pre-processes the monitored traf-
fic with both data rate reduction and privacy protection in
mind. The second stage is in charge of the final analysis
and storing the relevant information. In particular, the pri-
vacy sensitive information is encrypted on per flow basis by
the first stage, so that the second stage cannot access any
flow without an appropriate key, which is given only when
there is a strong reason to do so. In this setting, we study
a sliding window type of mechanism for escrowing a secret
decryption key from the first stage to the second in response
to observing a sufficient number of malicious events within
a specified time duration. Given the flow specific key, the
second stage can then take a closer look at the correspond-
ing part of the traffic, and decide on further actions. As a
result, the privacy of the other users cannot be violated.

Categories and Subject Descriptors

C.2.3 [Computer systems organization]: Network oper-
ations— Network monitoring; K.4.1 [Public policy issues]:
Computers and Society—Privacy

Keywords

privacy, Shamir’s scheme, key revocation, sliding window

*Dr. Hyytié is currently with TKK, Finland

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyautherwise, or
republish, to post on servers or to redistribute to listgyuires prior specific
permission and/or a fee. PAIS’10, March 22, 2010, LausaBnézerland.

Copyright 2010 ACM

1. INTRODUCTION

Ever more powerful data mining techniques for different pur-
poses are continuously being developed and deployed. Data
centers have got practically infinite amounts of memory in
many cases, and any information that once gets stored can
be easily retrieved later on. Network operators are not an
exception, and they also carry out various traffic monitor-
ing activities for network planning purposes and the opti-
misation and protection of their networks. However, the
information carried in the networks is often sensitive and,
in particular, private in nature. In other words, there is
a generally acknowledged conflict of interest between pri-
vacy preservation and the usefulness of the gathered data.
Collecting and processing privacy sensitive data in a proper
manner is indeed a complicated task. For example, the EU
has come up with directives which set guidelines for what
is considered as personal data (Directives 95/46/EC and
2002/58/EC) as well as legislation regarding data retention
(Directive 2006/24/EC).

Various cryptographic primitives provide invaluable tools for
realising privacy enforcing mechanisms in traffic monitoring
systems. In this work, we consider a two-stage traffic mon-
itoring system where the processing of the raw data is lim-
ited to the first stage [1]. In other words, the sole purpose
of the first stage is to i) (proactively) prevent privacy vi-
olations, and ii) reduce the data rate to the second stage
by forwarding only the relevant information. Note that ii)
in fact already supports i) directly. At the second stage
more complex operations can be carried out based on the
pre-processed data from which privacy sensitive data was
already removed, or are at least protected by appropriate
cryptographic means.

To illustate the concept, let us consider a simplified problem
with volume based billing, e.g., in a mobile data network.
Suppose that a billing system fulfills two purposes: i) the
system has to provide the monthly traffic volumes per cus-
tomer for sending the bills, and ii) in case a customer re-
pudiates a bill, the system must be able to provide a “more
detailed proof” for the usage. Let us assume that a list of
contacted IP addresses together with time and volume infor-
mation constitutes a sufficient proof. The privacy problem
we want to alleviate in this illustrative example scenario is

front-end

decryption hints

back-end

IDS reports

> analyze
| encrypt flows

X,
§
>
&
N

2]

>
)
§

encrypted flows

suspected flows

all traffic/data exposed

storage

only suspicious traffic/data exposed

Figure 1: Privacy-aware traffic anomaly detection: front-end processes the monitored traffic in a way that
back-end can carry out further analysis only on suspicious parts of the traffic. The system both enforces the

privacy and improves the performance at the back-end.

one of a curious employee of the operator who wants to find
out which Web servers some customer has visited, without
the customer’s consent. To this end, assume that each con-
tract is given a unique identification number (which is a
prerequisite for differentiating between the customers). The
billing system then works as follows. The first stage provides
two data streams:

1) {hash;(id), volume},
2) {hashz(id), dest addr, time, volume},

where the former is generated on a daily basis, and the latter
is per flow information. The first stream is used for sending
the bills to the customers, with the aid of address infor-
mation obtained from a customer database. In case there of
repudiation, the corresponding customer can provide his/her
identification number, which then allows the parties to ex-
amine the claimed usage in detail. If the two hash functions
are cryptographically strong, then there is no easy way to
compute hashs(id) for a given h1 = hash;(id). In particu-
lar, a curious employee has no means to compare the two
databases directly. We note that in this two-stage design,
the first stage has a very important role of being respon-
sible for pre-processing the information flows for different
purposes in a privacy preserving manner. This is in stark
contrast to the traditional approach, where full traffic traces,
containing a wealth of privacy sensitive information, are first
collected, and then later used for different purposes. As a
result, a high risk of infringing the users’ privacy is always
present.

1.1 Two-stage traffic anomaly detection

Our reference system for traffic anomaly detection system
consists of two stages [1, 2]. The first stage, referred to as
front-end (FE), is in charge of tapping the wire and carrying
out a preliminary per-packet analysis in real-time. Efficient
mechanisms, such as counting operations over a large base
of possible flows [3, 4], can be deployed in the FE to this
end. However a discussion of these techniques is out of the
scope of the present paper.

In many cases, it is not possible to identify a given flow
as malicious based on the first few packets. Due to strict
real-time constraints, and assumed limited storage capac-
ity, the front-end cannot store the packets for longer dura-
tions. Instead, the relevant, and typically reduced, packet
or flow level information is immediately passed further to
the second stage referred to as the back-end (BE). In order
to protect the users’ privacy, the traffic under observation

is first encrypted on per-flow basis before the transmission
to the back-end. The overall system is illustrated in Fig. 1.
We note that a flow here can correspond to different combi-
nations of packet properties defined by the traditional five
tuple, e.g., “all packets from a single IP address”, or “all
packets with the same five tuple” with some maximum time
interval between the packets. The fact that each flow is en-
crypted with a unique key allows one to reveal traffic on a
per flow basis. When part of the traffic is deemed to be sus-
picious, the system allows one to take a closer look at the
particular fraction of traffic, thus preserving the privacy of
the other users.

The back-end stores the encrypted traffic traces for an ap-
propriate duration of time that is defined by the applicable
legislation and technical considerations. As all data is en-
crypted, the BE cannot decrypt the traffic at this stage and
there are no privacy concerns. However, in case the prelimi-
nary data analysis at the FE suggests a potentially malicious
activity, then, and only then, the decryption key for the par-
ticular flow (or flows) is revealed to the back-end by means
of a key escrow process. This means that in this case it
is considered justified for the operator at the back-end to
take a closer look at the contents of the potentially mali-
cious activity and to decide on further actions. Above we
have assumed that when malicious activity is suspected, the
operator wants, and is allowed to, look at the corresponding
traffic at the packet level. Equally well, the same system
can be used to expose only, e.g., flow level data or just the
corresponding [P addresses.

More specifically, in [2], it is proposed that the informa-
tion about the decryption keys is embedded into encrypted
packet flow data by revealing a single part of the key (i.e.,
a shadow) in response to observing a suspected anomaly
event. To this end, Shamir’s secret sharing scheme [5] is
used to protect the key until m events have been observed.
In particular, the procedures at the FE are (close to) state-
less and thus they especially well suit real-time operation. In
some sense, the above means that FE outsources the count-
ing of events to the BE, and only when the given threshold
of m has been exceeded does the specific decryption key for
flow f become available at the BE. We note that the time
horizon of the resulting secret revealing process is infinite.
In [6] this scheme is further extended by combining it with
a class of erasure codes.

In this paper, we focus on studying similar processes where

an “oracle” mumbles the words of wisdom (in response to
each detected suspected malicious event), and only if a suf-
ficient amount of information about particular activity is
received during a finite time interval, corresponding to a
sliding time window, then a particular secret becomes avail-
able for the recipient (i.e., the BE obtains a flow specific de-
cryption key). In other words, as the shadows expire, they
and the corresponding data self-destruct automatically. We
note that the self-destructing property has been identified
as a very important factor also in other contexts [7]. The
main contribution of this work is to demonstrate how a slid-
ing window type of key escrow mechanism can be realised
in this context, and in particular, that a stateless operation,
required for highly scalable solutions, is also feasible.

The rest of the paper is organised as follows. Firstly, in
Section 2 we introduce the notation and the key concepts
relevant in the context of this work. Section 3 describes sev-
eral different schemes for realising the sliding window type
of behaviour in a key escrow process, after which Section 4
concludes the paper with a brief discussion of the proposed
approaches and an outlook on future work.

2. PRELIMINARIES

Given a set of k + 1 points, (zo,¥0),- .., (Tk, yx), the La-
grange polynomial L(z) is a polynomial of (at most) degree
k such that L(z;) = y; for all 4, and is given by a linear
combination,

k
L) =3y - (a), (1)

=0

of Lagrange basis polynomials,
T — T;
L; = | | _— 2
i(z) ' 2 — i (2)

This holds for both rational and real numbers, as well as,
for modulo p arithmetic with p prime.

In a (m, n) secret sharing scheme, n shadows (or shares) are
distributed to n different parties in such a way that given
any set of m shadows, m < n, one can reconstruct the secret
S. Shamir’s secret sharing scheme, given in Table 1, is based
on a random polynomial of degree m — 1 in finite modulo p
field, where p is a prime and m < n < p. Given m points,

(z1, P(21)),. ., (@m, P(xm)),

with x; # z; when ¢ # j, the polynomial P(z) is well-defined
and, in particular, P(0) provides the secret. Note that once
some points have been revealed there is no way to take this
information back, i.e., revoke it, unless one somehow modi-
fies the polynomial.

The key escrow scheme given in [2] uses Shamir’s scheme.
Threshold m defines the number of suspicious events result-
ing a decryption key disclosure at the back-end:

Scheme 1: (Basic)

1. For each flow f, choose a secret decryption key Sy and
define a secret polynomial

1

Pf(x):Sf+a§f)x+...+a£f:)_lxmf mod p,
with random coefficients agf)w“,ag,f),l where p is a

constant prime.

2. Upon observing a suspicious event for flow f, disclose
a shadow (z, Pf(x)), with random x.

Given m or more shadows, one can compute Py (x) using the
Lagrange interpolation polynomial , (1) and Py(0) yields the
secret Sy.

2.1 Stateless operation

When the flow specific coefficients agf) of P;(x) can be ob-
tained using a pseudorandom function, the front-end oper-
ation is essentially stateless:

Definition 1: Key escrow scheme is stateless if a shadow,
disclosed in response to an observed event for flow f at time
t, can be computed efficiently as a function of triple (f,t,s*),
where s* is a global salt.

Scheme 1 is stateless in the sense of Def. 1. To this end, as
explained in [2], we define the flow specific coefficients a; of
the Shamir’s polynomial P(z) as

ai:hi(s*7f), i:l,...,m—l,

where the h;(z) are appropriate pseudorandom functions to
[0,p — 1], parameter s* is a secret salt known only to the
FE (a common constant), and the decryption key ap = Sy
is the constant term, Sy = ho(f) where ho(f) is some cryp-
tographic hash function.

Stateless operation has two important implications. Firstly,
stateless operation tends to translate to a higher perfor-
mance and constant execution time, both of which are ideal
for real-time systems. Secondly, stateless operation means
that the system is scalable to any number of flows by means
of parallel operation. For example, several front-end units
can operate independently of each other, and at the same
time, by comprising a distributed traffic monitoring sys-
tem, provide information about all observed events in or-
chestrated manner. Consequently, stateless operation is an
important objective for all the schemes studied in this paper.

2.2 Revocation of keys

A typical problem with secret sharing schemes is when one
or few shadows accidentally leak out. In this case one wants
to revoke the exposed keys and replace them with new ones,
which translates to a new secret polynomial P*(x) [8]. For-
mally,

(m,n) " (m",n"),

where k denotes the number of shadows kept the same. For
obvious reasons,

k+1 < min{m,m"}.

Table 1: Shamir’s secret sharing scheme [5].

Shamir’s scheme:

large prime.

e Choose m < n < p, where m is threshold, n is number of shadows, and p is some

e Set ap = s (secret) and pick in random a; € [0,p — 1], ¢ =1,...,m — 1, giving
Plz)=ao+aiz+...+ am_1x™ !

e Distribute the shadows: {3, P(i)},i=1,...,n.

mod p.

Given k shadows (or points) and the secret, P(0) = S, the
new polynomial has m* — (k 4 1) degrees of freedom, which
allows one to pick a new secret polynomial P*(x) and the
remaining n* — k shadows.

A practical problem is the fact that the coefficients of the
P*(z) cannot be chosen independently in random, but in-
stead the existing k points set constraints. To this end, one
can first choose m* — k — 1 new points in random, so that
in total m™ points are fixed. Then, by using the Lagrange’s
interpolation polynomial (1), one can determine the coeffi-
cients of the new polynomial and also the remaining n* —m*
new shadows. Note that the described change to a new poly-
nomial does not jeopardise the security of the scheme.

Moreover, replacing the current polynomial with a new one
that has a higher degree allows one to “push” the disclosure
threshold higher while keeping k, k < m, already disclosed
points the same. In other words, this operation can be seen
equivalent to taking a negative step with regards to disclo-
sure process of Scheme 1. Other possible means to approxi-
mate a negative step are:

e To reset the polynomial, which is lightweight approxi-
mative method to achieve similar behavior,

o At step k (after k& < m shadows has been revealed),
first to reduce the threshold to k, which gives wrong
secret ay. Then define a new secret polynomial P’ with
threshold m — k 4+ h in such a way that the original
secret ao is a§ + aj mod p.

Neither is really elegant for our purposes. In the next sec-
tion, we provide several solutions which automatically re-
voke the expired shadows as the time goes by.

3. SLIDING WINDOW MECHANISM

The so-called sliding window is a very popular transmis-
sion control mechanism in communication engineering [9],
which is also utilized by TCP. The essential principle of this
mechanism is that the number of non-acknowledged packets
during any time interval (to,to + At) should be at most m,
where m is some constant, At denotes the length of the time
window, and to is an arbitrary time offset. If the number of
non-acknowledged packets is greater than m, then the trans-
mitter has violated the transmission policy by sending too
many packets.

Conversely, the sliding window criterion can be also applied
as a threshold. That is, we say that m or more events during
a time interval of length W should trigger an alarm. In
discrete time this means that during W consecutive time
slots m or more events have occurred. In terms of queueing
theory, this is equivalent to considering the time to the first
blocked customer in G/D/n/n system with general inter-
arrival times, a constant service time of D = W, and n =
m — 1 servers and no waiting places.! The actual question
is if a “customer” would be blocked during the duration of a
flow or not.

Coming back to the key escrow scheme, let us pose the ques-
tion of how a key escrow process with a sliding window type
of expiration can be realised. More specifically, we are in-
terested in devising a scheme in which one of the conditions
given above leads to the disclosure of a secret. At the same
time, shadows disclosed W or more time units earlier provide
no information, i.e., past shadows have been revoked. l.e.,
when a given threshold is not exceeded, the decryption key
remains unknown and the corresponding data self-destructs
automatically.

Note that even though privacy aware traffic anomaly detec-
tion systems represent the main background of this work,
the concept of key escrow schemes with expiring “bits of in-
formation” itself is general. Hence, the latter part of this
paper in fact applies also to the general problem. Unless ex-
plicitly stated otherwise, in the following we always consider
a single flow f, where f denotes a flow identifier (e.g., a five
tuple, source IP address, etc.).

3.1 Continuous time mechanism

Let us start with the continuous time case, which leads to
the most computationally intensive solution. The threshold
for secret disclosure at time ¢t + W is

A(t,t+ W) > m,

where A(to,t1) denotes the number of events during time
interval (to,t1). This can be achieved by modifying Shamir’s
polynomial P(x) in a dynamic fashion as follows:

! Another similar mechanism is the token bucket, which cor-
responds to a G/D/1/n queue: single server and n = m — 2
waiting places.

Scheme 2: (Exact revocation of shadows)
Initially pick a random polynomial P(x), and record all the
disclosed points:

(t, Ti, P(l’z)) — P.

Then, upon observing an event at time t:

1. If |P| > m then STOP. (S already disclosed)
2. Clear shadows older than W time units from P.

3. If no point got removed, then keep old P(z).
Otherwise, |P| < m —2, choose in random m —1— |P|
new points, and (1) yields new P(x).

4. Disclose a shadow (t,z, P(x)) with © random.

Clearly, the revocation of shadows disclosed W or more time
slots earlier works and they provide no additional informa-
tion for computing P(0) in the current state, except for the
case the the secret has already been disclosed earlier. Note
that the communication costs are the same as with the basic
scheme, i.e., each event triggers a single point (¢,z, P(z)) to
be disclosed. However, this scheme involves more computa-
tional efforts at the source, and in particular, the operation
is stateful (cf. Def. 1) and does not scale well with the in-
creasing number of flows. For a discrete time version, one
can use W Bloom filters [10, 11] to keep track of the dis-
closed points, which mitigates the problem of statefulness
to some degree.

3.2 Discrete time mechanism

Let us next consider discrete time, where each time interval
corresponds to one time slot. With W = 1, the criterion
applies to each time slot individually. This can be accom-
plished simply by picking a new Shamir polynomial for each
time slot, which allows an arbitrary intra time slot threshold
of m events. For W > 1, the straightforward way is to use
multiple concurrent Shamir polynomials:

Scheme 3: (Concurrent Shamir polynomials)

1. For each time slot j, choose a new polynomial, P;(x),
which is used for W time slots.

2. Consequently, there are W concurrently active polyno-
mials during each time slot (see Fig. 2).

3. Upon observing an event at time t, disclose one share
of each polynomial,

{j7 Pj(x)7 sy PJ'+W—1(x)}7
where j = [t —W 4+ 1| and x ~ U[0,p — 1].

It is easy to see that this construction achieves the goal and
works with any W > 1. Moreover, Scheme 3 is stateless in
the sense of Def. 1, as one can define the coefficients using

o =hi(s*, f,4), i=1,....m—1,

where j corresponds to the jth polynomial, and h; is a suit-
able pseudorandom function. However, the communication
cost is a linear function of W, and thus the scheme becomes
too tedious when W is large.

event

>

t t t t

puxblish: {Igl(r), P,(1} time

Figure 2: Using multiple polynomials allows sliding
window type of threshold, W = 2.

3.3 Accuracy performance analysis

Let us next demonstrate the performance improvement with
regards to the accuracy in the disclosure that the use of con-
current polynomials yields over a single polynomial. For
simplicity, we consider the cases of W = 1 (single polyno-
mial) and W = 2 (two concurrent polynomials), as illus-
trated in Fig. 2.

As the background lies in privacy preserving traffic moni-
toring, we do not allow false positives, i.e., no input pattern
with less than m events during a given time window may
result in the disclosure of a secret. Both schemes obviously
achieve this as they both “monitor” only some of the possible
time intervals iof a given length.

In order to carry out the following analysis, we define a test
input sequence which should be detected. To this end, we
consider a situation where M > m events occur during a
time interval equal to W time slots and refer to this time
window as event window. The offset is assumed to be ran-
dom, i.e., the event window starts at a random point in some
time slot. We note that all M events occur during a time
interval of W 4 1 time slots, i.e., during the time interval
two consecutive polynomials cover. At most m — 1 events
can be “assigned” to each of these without disclosing the se-
cret. Thus, when M > 2m — 2 the secret will always be
disclosed independently of the chosen W, i.e., the detection
probability increases from 0 to 1 as the number of events
M increases from m — 1 to 2m — 1. With W — oo, it just
becomes highly unlikely that m or more events do occur in
such a way that the secret remains undisclosed.

With W = 1 the event window overlaps with two consecutive
time slots. The system discloses the secret if m out of M
events occur during the first time slot, N1 > m, or during the
second time slot, N2 > m, where N1 + N2 = M. Assuming
further that the M events are independently and uniformly
distributed within the event window, we have

Ny ~Bin(M,p) and Ni+ Ny =M,
where p corresponds to the random offset between the first

time slot and the event window, 0 < p < 1. Consecutively,
let P{D} = P{disclosure} and for m < M < 2m —2 we have

P{D|p} = i P{N; =i} + ZP{M =i},

where the first sum corresponds to cases when N2 > m and
the second sum to cases when Ni > m. As p is uniformly

Disclosure probability with thresholds m=4,8,16,32
10*‘/
[/ /|
] ﬁ / / 7
081 [t
L me4 /mzs /m:‘le /m:3;
0.6 | /
Lol / /
| /£
0.4 i -
i / / single (W=1)
Lol / /T two (W=2)
021 —i ;
SN
0.0]
0 10 20 30 40 50 60

events M

probability

Figure 3: Two concurrent polynomials (W = 2 in
Scheme 3) improve the disclosure accuracy consid-
erably on average.

distributed to (0,1) the above gives

P(D} = [P(DIppap = LT,

when m < M < 2m — 1. Obviously, P{D} =0 for M <m
and P{D} =1 for M > 2m — 1.

For W = 2/ the situation is similar. In this case, the M
events fall into W + 1 = 3 time slots out of which the mid-
dle one is common to both polynomials. Hence, instead of
binomial distribution, here we have a trinomial distribution
for N1, N2 and N3, and the secret is disclosed when either
N1+ N3 > m or Nu + N3 > m.

Fig. 3 illustrates the resulting disclosure probabilities as a
function of M with thresholds m = 4,8,16,32 and W = 1,2
concurrent polynomials. For each value of m, the left solid
curve corresponds to W = 2 concurrent polynomials, and
the right dotted curve to W = 1 concurrent polynomial.
We observe that W = 2 indeed provides a significantly bet-
ter and more prompt response on average especially with
larger threshold values of m. Note that in an ideal case the
response would be an impulse function at M = m corre-
sponding to Scheme 2.

3.4 Dynamic polynomials

It is also possible to do without W concurrent polynomials
and instead modify the polynomial in a dynamic fashion,
i.e., define a sequence of polynomials denoted by P;(z) =
Pj(z, f) where f denotes the flow identifier. The idea is that
two consecutive polynomials P;(x) and Pjyi(x) can share,
in a certain way, some of the shadows. The time between
two polynomials P; and Pjy is referred to as time epoch,
which can consist of one or more time slots. Then, let W
denote the window size, i.e., the number of shadows, out of
which d are revoked and w are preserved at the end of each
time epoch. Thus, W = w + d, and

revoked preserved

(PJ(O)7PJ(1)7 "7Pj(d)7pj(d+1)7 EE PJ(W)) — LIj41.

A polynomial of degree (m — 1) can be defined by specify-
ing points P(0),..., P(m — 1) (note that here P;(0) = Sy).

Pj(x)‘l‘Z‘3
\H

d

Pt | 1 |

Figure 4: Sliding window scheme realised by
Shamir’s scheme with discrete time: W = 8 and
d = 3, threshold m = 7 allows w = 5 common points
between two consecutive polynomials.

[7]

6 8
l i l random
3 5!

[+ [- I

compute

!

P |e— | b

Consequently, as for each epoch we wish to have a new ran-
dom polynomial, we can keep at most m — 2 points, i.e.,
w<m-—2,and W =w+d<m+d— 2. Additionally, one
can also require that 2d < W i.e., that all shadows remain
within the window at least for two time epochs. These two
together yield

2d<W<m+d—-2 & d<w<m-—2 3)

which sets bounds for a practical window size W as a func-
tion of m and d

When W < m one cannot compute the secret even if a full
window of W shadows is available. However, one can always
disclose shadows Pj(z) with £ > W, which then expire im-
mediately after the current epoch (see Scheme 5). Optional
condition W > m together with (3) means that d > 2, and
(3) becomes

max{m,2d} <W < m+d— 2.

For the maximum slack, max(W — m), one obtains the fol-
lowing diagram:

d=2 d=3 d=4 d=5 d=6

m=4 0

m=5 0 0

m=6 0 1 0

m=7 0 1 1 0

m=8 0 1 2 1 0

m=9 0 1 2 2 1
m=10 0 1 2 3 2

The above diagram reveals the unavoidable fact that longer

time windows than m are not possible unless the number of
revoked shadows d is rather large. Next we introduce two
schemes that define such a sequence of polynomials, P;(x).
Later on, we will discuss how these polynomials can actu-
ally be used to disclose shadows in response to the observed
events.

Let r; = r;(f) denote a (pseudo) random sequence for flow
f. The first scheme is rather straightforward:

rnd(0,p-1) one-time part

‘ Values defining P(x)
for the next time slot

" 11 11
PO PR P(k) i l i
Values defining P(x) i ‘ c r ‘ ' ‘ . ‘ ‘
for the first time slot kel | - m-1| 'm mel || Tmkl

Figure 5: Sliding window type of scheme, which en-
ables stateless operation as the part shared between
consecutive polynomials comprises random points.

Scheme 4: (Dynamic polynomial)
Initially, define Pi(x) by

131(0)=Sf7 and Pl(i)ZTi7 1= 17 v, M — 17

and the following Pj+1(x) recursively using

Pj1(0) = Sy,
Pj+1($)IPj($+d)7 m=1,...,w, (4)
Pj+1($) = Tj(m—w—1)4az> r=w+1,...,m—1.

By using (1), the above m points define Pj(z), Vj, and one
can compute the remaining shadows with x = m,..., W
(also for x > W if needed).

The scheme is illustrated in Fig. 4 for d = 3, m = 7 and
W = 8, i.e., the criterion is 7 out of 8 consecutive time slots.
Note that the basis polynomials (2) are constant here, i.e.,
the step computing the next Pj;+1(z) can be implemented
efficiently, e.g., in hardware. Unfortunately, Scheme 4 is not
stateless in the sense of Def. 1, as (4) results in a recursion
which ends only at P;(z).

Another similar scheme is depicted in Fig. 5, where window
size W = m — 1. Consequently, even the knowledge of all
W shadows is insufficient in order to decrypt the secret, and
additional one-time shadows with = > W are required. The
gain is that the next polynomial Pjii(x) can be defined in
such a way that it depends only on the (pseudo) random
numbers 7;:

Scheme 5: (Stateless dynamic polynomial)
Using (1), define Pj(z), j =0,1,..., by the points

P;(0) =Sy (flow specific secret),
PJ(Z) = Td-j+i, i = 1, N (e 1.

The pseudorandom sequence r; = r;(f) defines directly the
Pj(z), and thus this scheme is stateless in the sense of Def. 1.
Note that d = 1 is generally the best choice, unless the
computation time of each P;(x) per time epoch has to be
taken into account.

Note that with both schemes a shadow (z, Pj(z)) expires at
time which depends on both x and j. In particular, we have
three types of shadows:

i) Shadows with z =1, ..., d that may have been already
disclosed during the previous time slots, and will expire
at the end of the current time slot,

ii) Shadows with z =d+1,..., W that are valid for

-1
1+ \‘xd J time slots,

iii) One-time shadows with © > W that are valid only for
the current time epoch (cf. Scheme 5).

Hence, there is an incentive to disclose the latest possible
preserved shadow, © = W. However, disclosing the same
shadow twice is not useful either. In general, with randomly
chosen z, one should not disclose type i) shadows with =
1,...,d at all, because they are less useful than the type iii)
one-time shadows in the sense that one-time shadows have a
smaller probability of having been disclosed earlier on, and
both expire at the end of the current epoch.

Finally, we note that changing the polynomial dynamically is
not straightforward as it introduces an additional dimension
to the disclosure process corresponding to the freedom to
choose between the preserved shares and one-time shadows.
This complicates both the analysis and the actual use of
this type of approach. A more detailed performance analysis
study is thus a topic for future research.

3.5 Summary of the schemes

All schemes are summarised in Table 2. As already men-
tioned, the state information per flow, e.g., coefficients of
the polynomial P(z), can often be derived using appropri-
ate pseudorandom functions having time ¢, the flow identifier
f, and a common (secret) salt s* as input parameters. In
this case, the front-end can compute each shadow efficiently
on the spot based solely on the triple (f,t,s*). The last col-
umn indicates whether the stateless operation is possible.
For clarity, the flow identifier f varies case by case, but as
an example, it can stand for the source IP address. The
computational burden column indicates the complexity of
the scheme with respect to the front-end.

4. CONCLUSIONS

We have considered several schemes which, by cryptograph-
ical means, allow one to escrow a secret key when certain
events have emerged. Our motivation for such a scheme is
the model of a two-stage anomaly detection system where
the role of the first stage is to protect the users’ privacy. In
order to keep the first stage operation scalable and stateless,
each detected suspicious event triggers a piece of informa-
tion, a shadow, to be disclosed. Given a sufficient number
of shadows, the second stage can compute the secret key,
which allows it to carry out further analysis. The actual
information disclosed by the secret key is implementation
specific detail.

The main focus of our work has been set on key escrow mech-
anisms with expiring shadows which ensure self-destruction
of the corresponding data. The considered threshold schemes
allow one to define the number of events that must occur
during W time units in order for the secret key, and the cor-
responding data, to be disclosed. We have given several solu-
tions to this end, which differ in terms of flexibility, compu-
tational complexity and the number of internal states. The
common property is that the bits of information disclosed

Table 2: Summary of the key escrowing schemes.

time horizon time communication | computational | states per flow | pseudorandom
per event burden operation
Scheme 1 | infinite continuous 1 shadow light yes
Scheme 2 | sliding window | continuous 1 shadow heavy active shadows | no
Scheme 3 | sliding window | discrete W shadows medium yes
Scheme 4 | sliding window | discrete 1 shadow heavy m no
Scheme 5 | sliding window | discrete 1 shadow heavy yes

earlier than W time units ago expire and self-destruct. This
is achieved by dynamically changing Shamir’s secret poly-
nomial(s).

This type of key escrowing mechanisms is useful for the de-
scribed privacy aware anomaly detection system, and it also
bears great potential for further types of traffic monitoring
activities. When such a scheme is used as a part of traffic
anomaly detection system for escrowing a secret flow-specific
decryption key, the scalability requirements imply that the
scheme must be able to provide a new shadow on spot given
the flow identifier, time, and a random salt value. In partic-
ular, no flow-specific states should be kept. In this paper,
we have proposed a number of such stateless schemes (see
Table 2).

Statefulness is a very important factor for our two-stage traf-
fic monitoring system. In a more general framework, when
several front-end units co-operating and have limited com-
putational resources, a stateless key escrow scheme allows
one to reveal decryption keys by providing the shadows in
distributed fashion, thus achieving a high scalability and
preserving the privacy of the users at the same time. Future
work includes the investigation of other means to enforce
the users’ privacy in such systems.

Acknowledgements

This work was done within the scope of the EU FP7 project
PRISM (grant no. 215350) and partially supported by the
strategic project NO at FTW.

5. REFERENCES

[1] G. Bianchi, E. Boschi, D. Kaklamani, E. Koutsoloukas,
G. Lioudakis, F. Oppedisano, M. Petraschek,
F. Ricciato, and C. Schmoll, “Towards

privacy-preserving network monitoring: Issues and
challenges,” in Proc. of the PIMRC 2007, Sep. 2007.

[2] G. Bianchi, S. Teofili, and M. Pomposini, “New
directions in privacy-preserving anomaly detection for
network traffic,” in 1st ACM Workshop on Network
Data Anonymization (NDA 2008), Oct. 2008.

[3] C. Estan, G. Varghese, “New directions in traffic
measurements and accounting”, in ACM SIGCOMM
2002, Pittsburgh, USA, Aug. 2002.

[4] S. Ramabhadran, G. Varghese, “Efficient
Implementation of a Statistics Counter Architecture”,
in ACM SIGMETRICS 2003, San Diego, USA, June
2003.

[5] A. Shamir, “How to share a secret,” Commun. ACM,
vol. 22, no. 11, pp. 612-613, 1979.

[6] E. Hyytid, “Hybrid Secret Key Escrow Mechanisms as
Counters”, in Proc of the 1st International Workshop
on Security and Communication Networks (IWSCN),
May 2009.

[7] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy,
“Vanish: Increasing data privacy with self-destructing
data,” in Proc. of the 18th USENIX Security
Symposium, 2009.

[8] B. Schneier, Applied Cryptography; Protocols,
Algorithms and Source Code in C, 2nd ed. John Wiley
& Sons, 1996.

[9] D. Bertsekas and R. Gallager, Data Networks, 2nd ed.
Prentice-Hall, 1992.

[10] B. H. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” Commun. ACM, vol. 13, no. 7,
pp. 422-426, 1970.

[11] A. Broder and M. Mitzenmacher, “Network
applications of bloom filters: A survey,” Internet
Mathematics, vol. 1, no. 4, pp. 485-509, 2005.

