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ABSTRACT
Organizations often need to release microdata without re-
vealing sensitive information. To this scope, data are anon-
ymized and, to assess the quality of the process, various
privacy metrics have been proposed, such as k-anonymity, l-
diversity, and t-closeness. These metrics are able to capture
different aspects of the disclosure risk, imposing minimal re-
quirements on the association of an individual with the sen-
sitive attributes. If we want to combine them in a optimiza-
tion problem, we need a common framework able to express
all these privacy conditions. Previous studies proposed the
notion of mutual information to measure the different kinds
of disclosure risks and the utility, but, since mutual infor-
mation is an average quantity, it is not able to completely
express these conditions on single records. We introduce
here the notion of one-symbol information (i.e., the contri-
bution to mutual information by a single record) that allows
to express the disclosure risk metrics. We also show, with a
simple example, how l-diversity and t-closeness can be rep-
resented in terms of two different, but equally acceptable,
conditions on the information gain.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Statistical databases; H.1.1 [Models and Principle]: Sys-
tems and Information Theory

1. INTRODUCTION
Governmental agencies and corporates hold a huge amount
of data containing information on individual people or com-
panies (microdata). They have often to release part of these
data for research purposes, data analysis or application test-
ing. However, these data contain sensitive information and
organizations are hesitant to publish them. Typically, data
are contained in tables, and the attributes (columns) in the
original table can be categorized, from disclosure perspec-
tive, in the following types:
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• Identifiers. Attributes that explicitly identify individ-
uals. E.g., Social Security Number, passport number,
complete name.

• Quasi-identifiers (Key attributes). Attributes that in
combination can be used to identify an individual E.g.,
Postal code, age, gender, etc ... .

• Sensitive attributes. Attributes that contain sensitive
information about an individual or business, e.g., salary,
diseases, political views, etc ...

To reduce the risk, data holders use masking techniques
(anonymization) for limiting disclosure risk in releasing sen-
sitive datasets, such as generalizing the data, i.e., recoding
variables into broader classes (e.g., releasing only the first
two digits of the zip code) or rounding numerical data, sup-
pressing part of or entire records, randomly swapping some
attributes in the original data records, permutations or per-
turbative masking, i.e., adding random noise to numerical
data values. These anonymization methods increase protec-
tion, lowering the disclosure risk, but, clearly, they also de-
crease the quality of the data and hence its utility [7]. There
are two types of disclosure: identity disclosure, and attribute
disclosure. Identity disclosure occurs when the identity of
an individual is associated with a record containing confi-
dential information in the released dataset. Attribute dis-
closure occurs when an attribute value may be associated
with an individual (without necessarily being able to link
to a specific record). Anonymizing the original data, we
want to prevent both kinds of disclosures. In the anonymiza-
tion process Identifiers are suppressed (or replaced with ran-
dom values), but this is not sufficient, since combining the
quasi-identifiers values with some external source informa-
tion (e.g., a public register) an attacker could still be able
to re-identify part of the records in the dataset. To reduce
the risk some of the masking techniques described above
are applied on key attributes. To assess the quality of the
anonymization process, there is the need to measure the
disclosure risk in the anonymized dataset and its utility (or
equivalently the information loss). Both these quantities are
hard to define in general, because they may depend on con-
text variables, e.g., data usage, level of knowledge of the
attacker, amount of data released, etc..., and many possible
definitions have been proposed so far. We focus here on dis-
closure risk measures. Ideally, we should be able to express
these metrics in terms of semantically “similar” measures,
so we can easily combine them in a optimization problem.
In Ref. [12], the authors proposed an information theoretic



framework to express average disclosure risk and informa-
tion loss, using mutual information. The advantages of mu-
tual information formulation are twofolds: first, it allows
to express the different risk measures, and associate thresh-
olds, in a common framework, with well defined units; sec-
ond, it permits applying a wide range of well established
information theory tools to risk optimization (e.g., privacy-
distortion tradeoff problem [12]).

In this paper, we extend the information theoretic formula-
tion of disclosure risk measures. In particular, existing pri-
vacy metrics (k-anonymity, l-diversity and t-closeness met-
rics [13, 11, 9]) define minimal requirements (worst-case
scenarios) for each entry (or combination of keys) in the
dataset, but because mutual information is an average quan-
tity, it is not able to completely express these conditions on
single entries. In fact, as pointed out in [10], privacy is
an individual concept and should be measured separately for
each individual, accordingly average measures, as mutual in-
formation, are not able to fully capture privacy risk. Thus,
we introduce two types of one-symbol information (i.e., the
contribution to mutual information by a single record), and
express the disclosure risk metrics in terms of information
theory (see Sect. 3). We also present a simple example, to
point out that in presence of a constant average risk, the
records at the risk may depend on the information metric
used (Sect. 3.1). Lastly, we discuss our results and introduce
some directions for future work. In summary, this paper
does not provide a unique answer to what disclosure risk is,
but it gives the necessary theoretical ground for expressing
and comparing different risk measures. Before entering in
details about the proposed model, in the following sections
we will introduce some background on disclosure risk metrics
(Sect. 2.1) and information theory (Sect. 2.2).

2. BACKGROUND
2.1 Disclosure Risk Metrics
Let us consider a dataset containing identifiers, key attributes,
X, and sensitive attributes, W (for example as in Table 2).
We create an anonymized version of such data, removing
identifiers, and anonymizing key attributes (X̃), for exam-
ple generalizing them in classes (see Table. 3).

To estimate the disclosure risk in the anonymized data, var-
ious metrics have been proposed so far.

k-Anonymity [13] condition requires that every combination
of key attributes is shared by at least k records in the anon-
ymized dataset. A large k value indicates that the anon-
ymized dataset has a low identity disclosure risk, because,
at best, an attacker has a probability 1/k to re-identify a
record, but it does not necessarily protect against attribute
disclosure. In fact, a group (with minimal size of k records)
sharing the same combination of keys could also have the
same confidential attribute, so even if the attacker is not
able to re-identify the record, he can discover the sensitive
information.

To capture this kind of risk l-diversity was introduced [11].
l-diversity condition requires that for every combination of
key attributes there should be at least l “well represented”
values for each confidential attribute. In the original paper,
a number of definitions of “well represented” were proposed.

Definition Positive Chain rule Chain rule Average
definite X Y MI

I1 Yes Yes No Yes
I2 No Yes Yes Yes
I3 No Yes No Yes
I4 Yes Yes Yes/No No

Table 1: Main properties of the four definitions of
one-symbol information. I1 and I2 are discussed
in the main text, I3(x, Y ) ≡

∑
y∈Y p(y|x)[H(X) −

H(X|y)] [4] is a definition based on weighted average
of reduction of uncertainty, I4(x, Y ) ≡ I({x, x̄}; Y ) [1]
is the mutual information between Y and a set com-
posed by two elements: x and the its complement in
X: x̄ ≡ X\x. For more details, see [3].

Because we are interested here in providing an information-
theoretic framework, the more relevant for us is in terms of
entropy,

H(W |x̃) ≡ −
∑

w∈W

p(w|x̃) log2 p(w|x̃) ≥ log2 l

Although, l-diversity condition prevents the possible attacker
to infer exactly the sensitive attributes, he may still learn
a considerable amount of probabilistic information. In par-
ticular if the distribution of confidential attributes within
a group sharing the same key attributes is very dissimilar
from the distribution over the whole set, an attacker may
increase his knowledge on sensitive attributes (skewness at-
tack, see [9] for details). t-closeness estimates this risk by
computing the distance between the distribution of confi-
dential attributes within the group and in the entire dataset.
The authors in [9] proposed two ways to measure the dis-
tance, one of them has a straightforward relationship with
mutual information (see Eq. 6 below), as we discuss in the
next section.

These measures provide a quantitative assessment of the dif-
ferent risks associated to data release, but they have also
major limitations. First, they impose strong constraints on
the anonymization, resulting in a large utility loss; second, it
is often hard to find a computational procedure to achieve a
pre-defined level of risks; third, since they capture different
features of disclosure risks, they are difficult to compare and
optimize at the same time. To address the last point, we pro-
pose in the next sections a common framework, one-symbol
information, for expressing these three risk measures. We
will discuss the first two issues, in the last Section.

2.2 Information theory
Let us consider two random variables X and Y (e.g., the
tuple of key or sensitive attributes), which take values x and
y. Let us denote the corresponding probability density or
probability mass functions pX(x) (p(x) in short) and pY (x)
(p(y)). In the context of data anonymization, p(x) and p(y)
may be estimated in terms of frequency. Be p(x, y) and
p(x|y) the corresponding joint and conditional probability
functions. Following Shannon [14], we can define the mutual
information I(X; Y ) as:



I(X; Y ) =
∑

x∈X,y∈Y

p(x, y) log2

[
p(x, y)

p(x)p(y)

]

=
∑

x∈X,y∈Y

p(y)p(x|y) log2

[
p(x|y)

p(x)

]
, (1)

(with conditional probability p(x|y) = p(x, y)/p(y) accord-
ing to Bayes’ rule) or, equivalently, introducing the entropy
of a probability distribution: H(Y ) = −

∑
y∈Y p(y) log2 p(y),

I(X; Y ) = H(Y )−H(Y |X) =
∑
x∈X

p(x)[H(Y )−H(Y |x)]

(2)
where H(Y |X) ≡

∑
x∈X p(x)H(Y |x) is the conditional en-

tropy.

Mutual information summarizes the average amount of knowl-
edge we gain about X by observing Y (or vice-versa); e.g.: in
the trivial case, they are completely independent, p(x, y) =
p(x)p(y) and I = 0. Mutual information has some mathe-
matical properties that agree to our intuitive notion of in-
formation. In particular, we expect that any observation
does not decrease the knowledge we have about the system.
So, mutual information has to be positive, as it can be eas-
ily shown starting from Shannon definition. In addition,
for two independent random variables {X1, X2}, we expect:
I({X1, X2}, Y }) = I(X1, Y ) + I(X2, Y ). This additivity
property is a special case of a more general property, known
as chain rule [14].

Mutual information is an average quantity, for some appli-
cations (see Sect. 3 and e.g., [3] and references therein), it
is important to know which is the contribution of a single
symbol (i.e., a single value x or y) to the information. In his
original formulation, Shannon did not provide any insights
about how much information can be carried by a single sym-
bol, such as a single tuple in our case. After Shannon’s
seminal work, to the author’s knowledge, four different def-
initions of so called one-symbol specific information (some-
times also called stimulus specific information, because it
has been used in the framework of neural response analy-
sis) have been proposed. Ideally, this specific information
should be proper information in a mathematical sense (non-
negative, additive) and give mutual information as average.
Unfortunately none of the proposed definitions have these
properties (see Table 2.2), but each of them can capture dif-
ferent aspects of information transmission. In this paper, we
will focus on two of them, following [5] referred as I1 and I2,
which have applications for risk metrics in data anonymiza-
tion, we refer the reader to [5, 3] for a more detailed analysis
on all these quantities.

I1, Surprise
Originally proposed by Fano [8], this definition can be im-
mediately inferred from Eq. (1), simply taking the single
symbol contribution to the sum:

I1(x, Y ) = Surprise(x) =
∑
y∈Y

p(y|x) log2

p(y|x)

p(y)

This quantity measures the deviation (Kullback-Leibler dis-
tance) between the marginal distribution p(y) and condi-
tional probability distribution p(y|x). It clearly averages to

Original Dataset {X, W}
Name Height X Diagnosis W

Timothy 166 N
Alice 163 N
Perry 161 N
Tom 167 N
Ron 175 N

Omer 170 N
Bob 170 N

Amber 171 N
Sonya 181 N
Leslie 183 N
Erin 195 Y
John 191 N

Table 2: Original dataset.

the mutual information, i.e.
∑

x∈X p(x)I1(x; Y ) = I(X; Y ),
and it is always non-negative: I1(x; Y ) ≥ 0 for x ∈ X. Fur-
thermore it is the only positive decomposition of the mu-
tual information (for the proof, see Appendix 2 in Ref. [5]).
Since I1(x, Y ) is large when p(y|x) dominates in the regions
where p(y) is small, i.e., in presence of surprising events, this
quantity is often referred to as “surprise”. Surprise lacks ad-
ditivity, and this causes many difficulties when we want to
apply it to a sequence of observations. Despite this main
drawback, surprise has been widely used, for example for
exploring the encoding of brain signals.

I2, Specific Information
An entropy based definition has been proposed by De Weese
and Meister [5] and it may be derived from Eq. (2), extract-
ing the single stimulus contribution from the sum:

I2(x; Y ) = H(Y )−H(Y |x) = (3)

= −

[∑
y∈Y

p(y) log2 p(y)− p(y|x) log2 p(y|x)

]

Here, information is identified with the reduction of entropy
between marginal distribution p(y) and conditional proba-
bility p(y|x). This quantity captures how diverse are the
entries in Y for a given entry x. Indeed, it expresses the dif-
ference of uncertainty between the a priori knowledge of Y ,
H(Y ), and the knowledge for a given symbol x, H(Y |x). As
shown in [5], this is the only decomposition of mutual infor-
mation that is also additive, but, unlike mutual information,
it can assume negative values.

Note that any weighted combination of I1 and I2 averages
to mutual information, and it can represent a possible defi-
nition of one-symbol specific information. Thus, we have an
infinite number of plausible choices for a one-symbol decom-
position of mutual information. But, as mentioned above,
only I1 is always non-negative and for I2 only the chain rule
is fulfilled. In addition, as we will see in the next section,
only I1 and I2 have a straightforward interpretation as dis-
closure risk measures.



Anonymized Dataset {X̃, W}
Name Height X̃ Diagnosis W
******

[160-170]

N
****** N
****** N
****** N
******

[170-180]

N
****** N
****** N
****** N
******

[180-190]
N

****** N
******

[190-200]
Y

****** N

Table 3: Anonymized dataset.

3. INFORMATION THEORETIC RISK MET-
RICS

Let us express the different privacy metrics in terms of in-
formation theory.

• k-anonymity. In case of suppression and generaliza-
tion, we have that a single combination of keys in the
anonymized database x̃ can correspond to a number,
Nx̃ of records in the original table X. Accordingly,
the probability of re-identifying a record x given x̃ is
simply: p(x|x̃) = 1/Nx̃, and k-anonymity reads:

H(X|x̃) ≥ log2 k (4)

for each x̃ ∈ X̃. In terms of one-symbol specific infor-
mation I2, it reads

I2(X, x̃) ≡ H(X)−H(X|x̃) ≤ log2

N

k
(5)

where N is the number of tuples in the original dataset
X (assumed different). I2(X, x̃) measures the identity
disclosure risk for a single record. Eq. 4 holds also in
case of perturbative masking [2], therefore I2 can be
used for any kind of masking transformations.

Averaging Eq. 5 over X̃ we get:

I(X, X̃) ≤ log2

N

k

So, the mutual information can be used as a risk in-
dicator for identity disclosure [6], but we should be
remind that this condition does not guarantee the k-
anonymity for every x̃, i.e, it is necessary but not suf-
ficient.

• t-closeness condition requires:

D(p(w|x̃)||p(w)) ≡
∑

w∈W

p(w|x̃) log2

p(w|x̃)

p(w)
≤ t (6)

for each x̃ ∈ X̃. This is equivalent to the one-symbol
specific information I1 (surprise), i.e.,

I1(W, x̃) ≡
∑

w∈W

p(w|x̃) log2

p(w|x̃)

p(w)
≤ t

I1(W, x̃) is a measure of attribute disclosure risk for a
combination of keys x̃, as difference between the prior

belief about W from the knowledge of the entire dis-
tribution p(w), and the posterior belief p(w|x̃) after
having observed x̃ and the corresponding sensitive at-
tributes. Averaging over the set X̃ we get an estima-
tion of the disclosure risk (based on t-closeness) for the
whole set ( [12]),

I(W, X̃) ≡
∑
x̃∈X̃

p(x̃)
∑

w∈W

p(w|x̃) log2

p(w|x̃)

p(w)
≤ t

Again, this necessary but not a sufficient condition to
have t-closeness table, since this condition requires to
have t-closeness for each x̃.

• l-diversity condition, in terms of entropy, reads:

H(W |x̃) ≥ log2 l

for each x̃ ∈ X̃. It can be expressed in terms of one-
symbol specific information I2,

I2(W, x̃) ≡ H(W )−H(W |x̃) ≤ H(W )− log2 l

I2(W, x̃) is a measure of attribute disclosure risk for
a combination of keys x̃, as reduction of uncertainty
between the prior distribution and the conditional dis-
tribution.

Averaging over the set X̃ we get an estimation of the
average disclosure risk for the whole set [12].

I(W, X̃) ≡ H(W )−H(W |X̃) ≤ H(W )− log2 l

This is the l-diversity condition on average. Again this
is necessary but a not sufficient condition to satisfy
l-diversity for each x̃.

Figure 1: Values of attribute disclosure risk metrics:
I1 (Surprise) and I2 for the different entries in the
anonymized database. Dashed line indicated mutual
information I(X̃, W ), i.e., the average of I1 and I2.

3.1 Example
To illustrate the qualitative and quantitative differences in
the behavior of t-closeness and l-diversity based risk metrics,
I1 and I2, let us consider a simple example. This example is
not realistic, but the aim is to show some basic features of



I1 and I2 without any additional complexity. Let us take a
medical database {X, W} (Table 2) containing three fields
only: a unique identifier (name), a quasi-identifier (Height)
and a sensitive attribute (Diagnosis). In the released, anon-

ymized dataset {X̃, W}, Table 3, names are removed, the
Height generalized in broader classes, and the sensitive at-
tribute unchanged. Let us say that after this anonymiza-
tion process, we have reached an acceptable level of identity
and attribute disclosure risk as measured by I(X, X̃) and

I(W, X̃). But, if we analyze the contribution to this risk of

single entries in X̃ in terms of symbol specific informations
I1, I2 (see Fig. 1), we observe:

• The distribution of risk shows large fluctuations, so the
average is not a good representation of the risk level.

• The entries at risk (say, well above the average) de-
pends on the risk measures used (I1 or I2). In other
words, entries largely at risk according I2 (l-diversity
based) have low value of I1 (so they are acceptable
from t-closeness point of view), and vice versa.

In short, this simple example shows that, although, on av-
erage the two risk metrics are equal, their impact on single
entries can be the opposite.

4. DISCUSSION AND CONCLUSIONS
In the original t-closeness paper [9], the authors stated that
” Intuitively, privacy is measured by the information gain
of an observer.”. The question is which metric we should
use for measuring such information gain. In this paper, we
showed that if we consider ”information gain” as a reduction
of uncertainty, the corresponding privacy metrics is similar
to l-diversity, whereas if we think to information gain as the
novelty of the information, t-closeness is the corresponding
metrics. Accordingly, the choice of the privacy risk metric
depends on what kind of information we do not want to
disclose, which in turn depends on the specific application,
the tolerable level of information loss, and the attack model.
The advantage of the proposed formulation in terms of infor-
mation theory is that we can express all the different metrics
using comparable units (bits), and, at least principle, use all
the tools of information theory for finding the best tradeoff
between privacy and utility. The last point can be techni-
cally difficult in many cases, because expressing conditions
on particular records largely increases the complexity of the
optimization problem. Clearly, this is an important question
to address in the near future, and in particular if it is possi-
ble to find realistic cases where this problem is numerically
tractable.
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