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ABSTRACT 

Disclosures of health databases for secondary purposes is 
increasing rapidly. In this paper, we develop and evaluate a re-
identification risk metric for the case where an intruder wishes to 
re-identify as many records as possible in a disclosed database. In 
this case, the intruder is concerned about the overall matching 
success rate. The metric is evaluated on public and health datasets 
and recommendations for its use are provided. 

Categories and Subject Descriptors 

K.4.1 [Computers and Society]: Public Policy Issues – Privacy.  

Keywords 

Identity disclosure, privacy, re-identification risk, disclosure 
control.  

1. INTRODUCTION 

As more ostensibly de-identified health data sets are disclosed for 
secondary purposes [1, 2], it is becoming important to measure 
the risk of patient re-identification (i.e., identity disclosure) 
objectively, and manage that risk. Previous risk measures focused 
mostly on the case where a single patient is being re-identified 
[3]. With these previous measures, the patient with the highest re-
identification risk represented the risk for the whole data set.  

In practice, an intruder may re-identify more than one patient. The 
potential harm to the patients and the custodian would be much 
higher if many patients are re-identified as opposed to a single 
one. Therefore, there will be scenarios where the data custodian is 
interested in assessing the number (or proportion) of records that 
could be correctly re-identified. There is a dearth of generally 
accepted re-identification risk measures for the case where an 
intruder attempts to re-identify all patients (or as many patients as 
possible) in a data set. 

The variables that can potentially re-identify patient records in a 
disclosed data set are called the quasi-identifiers (qids) [4]. 
Examples of common quasi-identifiers are [5-9]: dates (such as, 
birth, death, admission, discharge, visit, and specimen collection), 

race, ethnicity, languages spoken, aboriginal status, and gender. 
An intruder would attempt to re-identify all patients in a disclosed 
data set by matching against an identification database. An 
identification database would contain the qids as well as directly 
identifying information about the patients (e.g., their names and 
full addresses). There are two scenarios where this could plausibly 
occur. 

1.1 Public Registries 

In the US it is possible to obtain voter lists for free or for a modest 
fee in most states [10]. A voter list contains voter names and 
addresses, as well as their basic demographics, such as their date 
of birth, and gender. Some states also include race and political 
affiliation information. A voter list is a good example of an 
identification database. 

Consider the example in Figure 1 of prescription records. Retail 
pharmacies in the US and Canada sell these records to commercial 
data brokers [11, 12]. These records include the basic patient 
demographics. An intruder can obtain voter lists for the specific 
county where a pharmacy resides and match them with the 
prescription records to potentially re-identify many patients. 

In Canada voter lists are not (legally) readily available. However, 
other public registries exist which contain the basic demographics 
on large segments of the population [7], and can serve as suitable 
identification databases. 
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Figure 1: Example of a prescription record database being 

disclosed containing patient demographics being matched against 
a population registry (identification database) which an intruder 

has access to, e.g., a voter list. The prescription database is a 
sample of the population registry. 
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1.2 Insider Attacks 

In many healthcare provider organizations the identity of patients 
and their basic demographics are broadly accessible to staff, but 
the clinical information is under stricter access controls. A staff 
member with access to such demographics would potentially be 
able to re-identify all patients in disclosed data sets quite easily by 
matching records on the demographics. For example, a recent 
study described the disclosure of hospital pharmacy records to a 
commercial data broker [13]. This data set included information 
about when the patient was admitted, their gender, age, and 
residential geographic information. A staff member with access to 
only the Admissions, Discharge, and Transfer database for the 
hospital would have those same variables and can potentially use 
them to re-identify the patients in the prescription records 
database, and hence their diagnosis and prescriptions. 

In the US, genotype and phenotype data collected from healthcare 
provider institutions for genome wide association studies are 
being made more broadly available [14]. A recent study has 
demonstrated how an insider from one of the source institutions 
can re-identify patients in the DNA database with certainty [15]. 

Privacy and security breaches by insiders are relatively common 
[16-20]. In a recent survey a quarter of healthcare IT professionals 
identified a data breach by an internal person within the past year 
[21]. Internal breaches come from people who have (or recently 
had) legitimate access to the data, but whose behavior jeopardizes 
the organization’s security and privacy. One survey found that 
27% of breaches were due to insiders [22]. In a 2007 Computer 
Security Institute survey, 59% of the respondents claim that they 
witnessed abuse of the network resources by an insider [23], and 
the 2009 survey shows that a significant percentage of monetary 
losses from breaches were due to malicious and non-malicious 
insiders [24]. These could involve employees who have access to 
critical data and engage in unauthorized explorations; they could 
be individuals who enter an organization with the intent to 
commit some kind of fraud, or some naïve employees who lose 
their laptop after they put sensitive information on it. There are 
also increasing cases of ex-employees taking or keeping personal 
information about clients/patients and other employees after they 
leave their employer (because they were laid-off, resigned, or 
fired) [25]. Recent analyses of breach data indicate that 20% are 
internal breaches [26], 34% of security and IT leadership in 
organizations worldwide estimated that the likely source of 
security incidents in the last year was an employee and 16% 
responded that it was an ex-employee [27], and in the US and 
Canada approximately 24% of data breaches in medical 
establishments (including hospitals and health insurance claims 
processors) are due to insiders and 32% of breaches involving 
medical records are due to insiders (between January 2007 and 
June 2009) [28]. Overall, investigators reported a rapid increase 
in offences committed by insiders [29].  

The type of attacks from the inside can have a huge impact on the 
organization. It was reported that an outside attack costs the 
organization on average $56,000 while an insider breach costs on 
average $2.7 million [29]. 

1.3 Marketer Risk 

In this paper, we develop and evaluate a re-identification risk 
metric for the case where an intruder wishes to re-identify as many 

records as possible in the disclosed database. We assume that the 
intruder lacks any additional information apart from the matching 
quasi-identifiers. 

The intruder is not interested in knowing which records from the 
disclosed data set were correctly re-identified. Instead, the more 
important concern is that the proportion of records in the 
disclosed data set that are correctly re-identified is sufficiently 
high. 

We will call the (expected) proportion of records that are correctly 
re-identified the marketer risk metric. This term is used to 
represent the archetypical scenario where the intruder is matching 
the two databases for the purposes of marketing to the individuals 
in the disclosed database.  

There are two cases where the marketer risk needs to be 
computed. The first is when the disclosed database has the same 
individuals as the identification database. For example, if the 
disclosed prescription database in Figure 1 contains all voters, 
and is matched with the voter list. The second, and more likely, 
case is when the disclosed database is a subset/sample from the 
identification database. For example, as in Figure 1, the disclosed 
prescription records database is a subset of the population covered 
by the voter list. 

We assume that the data custodian wishes to compute marketer 
risk to decide whether to release a database as is or if disclosure 
control actions are needed. It is quite unlikely that the custodian 
will have the identification database. For example, a pharmacy 
chain that is selling its prescription records will not purchase all 
voter lists across the states it operates in to create a population 
identification database to determine whether the marketer risk is 
too high or not. Therefore, the risk measure has to be computed 
only from the disclosed database. 

In the first case above the disclosed database is the same as the 
identification database, therefore access to an identification 
database is not an issue. However, in the second case where the 
custodian only has a sample, there are a number of reasons why 
the data custodian would not have an identification database. 
Often, a population database is expensive to get hold of. For 
example, the construction of a single profession-specific database 
using semi-public registries that can be used for re-identification 
attacks in Canada costs between $150,000 to $188,000 [6]. 
Commercial databases can be comparatively costly. Furthermore, 
an intruder may commit illegal acts to get access to population 
registries. For example, privacy legislation and the Elections Act 
in Canada restrict the use of voter lists to running and supporting 
election activities [6]. There is at least one known incident where 
a charity allegedly supporting a terrorist group has been able to 
obtain Canadian voter lists for fund raising [30-32]. A legitimate 
data custodian would not engage in such acts. 

1.4 Our Contributions 
In this paper we first consolidate different metrics from previous 
research and show that they all describe the same marketer risk 
measure. Then we formulate an estimator for the second case 
above where the disclosed database is a sample, and we 
extensively evaluate it on five data sets. In addition, we provide 
guidance on when and how to apply the marketer risk metric for 
disclosure control purposes. 



2. METHODS 

2.1 Notation 

We denote the set of the records in the disclosed patient database 

as U  and the set of records in the identification database as D , 

and U D⊆ . Let U n= ,  and D N= , which gives the 

total number of records in each database. Each record pertains to a 

unique patient. The set of qids is denoted by { }1, , p
Z z z=

…
, 

and let iz  be the number of unique values that the specific qid, 

i
z , takes in the actual data set. 

The discrete variable formed by cross-classifying all possible 

values on the qids is denoted by X , with the values denoted by 

1, , J… . Each of these values corresponds to a possible 

combination of values of the qids (note that 

1

p

i

i

z J
=

=∏ ). We 

call the records with the value { }1, ,j J∈ …  an equivalence 

class. For example, all records in a data set about 17 year old 
males admitted on 1st January 2008 are an equivalence class. 

In practice, however, not all possible equivalence classes will 

appear in the data set. We therefore denote by J�  the number of 

actual different values that appear in the data. Let 
i

X  denote the 

value of X  for patient i . The frequencies for different values of 

J�  are given by ( )j i

i D

F I X j
∈

= =∑ , where 

{ }1, ,j J∈ �… and ( )I ⋅  is the indicator function. Similarly, 

we define ( )j i

i U

f I X j
∈

= =∑  where { }1, ,j J∈ �… . 

We define the set of records in an equivalence class in U  by 

j
g , and the set of records in an equivalence class in D  by 

j
G . 

This also means that 
j j

g f=  and 
j j

G F=  for 

{ }1, ,j J∈ �… . 

2.2 Measuring Re-identification Risk 
An intruder tries to match the two databases one equivalence class 

at a time. In other words, for every {1,..., }j J∈ � , the intruder 

matches the records in 
j

g  to the records in 
j

G . Lacking any 

additional information apart from the matching qids, the intruder 
can match any two records from the two corresponding 
equivalence classes at random with equal probability. The intruder 
has the option to consider one-to-one mappings (i.e., no two 

records in 
j

g  can be mapped to the same record in 
j

G ) or not. 

In what follows, we will prove that in both cases (i.e., when 
considering only one-to-one mappings or not) the expected 

number of records that can be correctly matched is 
j

j

f

F
 per 

equivalence class, and the expected proportion of records that can 

be re-identified from the disclosed database is 

1

1 J
j

j j

f

n F=

×∑
�

. 

 

Theorem 1. The expected proportion of U  records that can be 

disclosed in a random mapping from U  to D  is.  

1

j
J

j

j

f

F

n
λ

=

=∑
�

 
……………(1) 

Note that if n N=  then 
J

N
λ =

�

. 

Proof. We consider two cases:  

1. the first case is when only one to one random mappings are 
used, and  

2. the second case is when any random mapping is used. 

 

A. One to one mappings:  

We prove first that the expected number of records that can be re-

identified from any equivalence class 
j

g  is 
j

j

f

F
: 

Assume that m  records in 
j

g  have been matched to m different 

records in 
j

G  for some {1,..., 1}
j

m f∈ − , then the 

probability that the 1m + th record in 
j

g  (which we denote by 

r ) will be correctly matched to its corresponding record in 
j

G  

(the corresponding match is denoted by s ), or 
rs

P  can be 

calculated as follows: 

(
rs

P P= record s  is not matched to any of the previously 

matched m  records ) (P r  is assigned to )s  

=

1

1 1 1

j

j

j j j j j

F

F mm

F F m F F m F

m

− 
  −  = =

− − 
 
 

 

Hence the expected number of records that would be disclosed 

from any equivalence class 
j

g  is 

1

1jf

j

j j

f

F F
=∑ . 



Now, the expected total number of records correctly matched 

becomes: 

1

J

j

jj

f

F
=

∑
�

, and the proportion of records correctly 

matched is 

1

j
J

j

j

f

F

n=

∑
�

. 

B. Random Mappings:  

We prove first that the expected number of records that can be 

disclosed from any equivalence class 
j

g  is 
j

j

f

F
: 

Let a  be any record in 
j

g , the probability that a  is correctly 

matched in a random mapping from 
j

g  to 
j

G  is 
1

j
F

 (because 

a  could be matched to any record in 
j

F ) 

Now the expected number of records that would be disclosed from 

any equivalence class 
j

g  is 

1

1jf

j

j j

f

F F
=∑  

Hence the proportion of records that can be disclosed is again 

1

j
J

j

j

f

F

n=

∑
�

. 

2.3 Relationship to Previous Work 

In a recent study,  the authors consider this matching problem 
from the record linkage perspective [33]. They discuss the case 

where the linking procedure for the records in 
j

g  and 
j

G  is 

random (in other words, they assume that the intruder has no 
background information), they only consider one to one mappings 

from 
j

g  to 
j

G , and they only consider the case where n N= , 

i.e. when 
j

f =
j

F  for all j . In that context, they prove that the 

probability of re-identifying exactly R  individuals from 
j

G  is: 

0

( 1)
!

!

j

v
F R

v

v

R

−

=

−

∑ . The expected number of re-identified records 

from an equivalence class 
j

G  is then: 

0 0

( 1)

!
!

j j

v

F F R

R v

vR
R

−

= =

−

∑ ∑  

which, turns out to be equal to 1. Hence, the expected total 
proportion of records re-identified in the identification database is 

equal to 
J

N

�

. 

In another study, Truta et al [34] presented a measure of 
disclosure risk that considers the distribution of the non-unique 
records in the sample. The measure represents the record linkage 
success probability for all records in the sample. The measure is 

the same as ours: 

1

j
J

j

j

f

F

n=

∑
�

, and was presented as a 

generalization of the sample and population uniqueness measure 

[34]: 

; 1j

j

j F

f

n=

∑ . 

In the case where the disclosed database is a sample of the 

identification database as illustrated in Figure 1 (i.e., U D⊂ ), 

the data custodian often does not have access to an identification 
database to compute the marketer risk before disclosing the data. 

In such a case we need to estimate the marketer risk, λ
�

. The 

values of 
j

f  would be known to the data custodian, therefore we 

need to estimate the values 1
j

F
using only the information in 

the disclosed database. In the remainder of this paper we evaluate 
three different estimators for doing so. 

2.4 ESTIMATORS 
Three estimators can be used to operationalize the marketer risk 
metric when only a sample is being disclosed: the Argus estimator 
[35], the Poisson log-linear model [36], and the negative binomial 
model [37, 38]. 

Recall that N  denotes the total population number, and n  the 

size of the sample. Denote by 
j

p  the probability that a member 

of the class 
j

G  is sampled (i.e., belongs to
j

g ), and by 
j

γ  the 

probability that a member of the population belongs to the 

equivalence class 
j

G .  

2.4.1 Argus 

Mu-Argus [35] proposes a model where 
j j

F f  is a random 

variable with a negative binomial distribution, where 
j

f  is the 

number of successes with the probability of a success being 
j

p :  

( ) ( )
1

1
1

0

jj
H ff

j j j j

j

j

H
P F H f p p

f

H f

−− 
= = − 

− 

≥ >

 

With the above assumptions, the expected value of 1
j

F
 is 

given by: 

( )1 1
Pr

j

j j j

i fj

E f F i f
F i

∞

=

 
= = 

 
 

∑  ……………(2) 



Equation (2) can be calculated using the moment generation 

function 
j jF f

M  [39] as follows: 

( )
( )0 0

1

1 1

j

j j

f
t

j

j F f t

j j

p e
E f M t dt dt

F p e

−∞ ∞

−

    
= − =     − −    
∫ ∫

To estimate 1
j

E
F

 
 
 

, we need to first estimate 
j

p . In [35], 

each record i  in the sample is assumed to have a weighting factor 

i
w  (also known as inflation factor) which represents the number 

of units in the population similar to unit i . The authors in [35] 

also proposed: 
j

j D

j

f
p

F
=

�
�  where 

; ( )

D

j i

i j i j

F w
=

= ∑
�

 is the initial 

estimate for the population, where ( )j i j=  indicates that 

record i  belongs to 
j

g .  

In our paper, since the weight factors 
i

w  are unknown, we 

assume that 
j

p  is constant across all equivalence classes and that 

j

n
p

N
= . 

Note that the estimated value for 
j

F  depends only on 
j

f  and is 

independent of the sample frequency in the other classes (i.e., 
there is no learning from other cells). Hence the information that 
one gains from the frequencies in neighboring cells is not used. 
However Argus has the advantage of being monotonic and simple 
to calculate. 

2.4.2 Poisson log-linear model 

In this model, the 
j

F ’s are realizations of independent Poisson 

random variables with mean 
j

Nγ : 

( )j j j
F Poisson Nγ γ∼ . Assuming that the sample is 

drawn by Bernoulli sampling with probability 
j

p , we obtain: 

( )
( )

( )( ) (1 )1
1

!

0

j
j j

H f
N p

j j j j

j

j

P F H f N p e
H f

H f

γ
γ

− − −
= = −

−

≥ >

Hence 
1

jp j

j

E f
F

 
 
 
 

 depends on 
j

f , 
j

γ  and 
j

p . Which 

can be calculated using the moment generation function 
j jF f

M  

[39] as: 
(1 )( 1)

0

1 t
j j j

j

tf N p e

p j

j

E f e e dt
F

γ −
∞

− − −
 

= 
 
 

∫  

Usually, a simple random sampling design is assumed where 

j
n p N= . To estimate the parameters 

j
γ , a log-linear model is 

used. 

Log linear modeling consists of fitting models to the observed 

frequency ( )j
f  in the sample. The goodness of fit of the 

observed frequencies to the expected frequencies ( )j
u  is then 

computed. The estimate for 
j

γ  is then set to 
j

j

u

p
. 

The log linear modeling approach uses data from neighborhood 
cells to determine the risk in a given cell (i.e., the estimated value 

of 
j

F  does not depend only on 
j

f ), the extent of this 

dependence is a function of the log-linear model used. 

The choice of the model is crucial in providing good risk 
estimates. Skinner and Shlomo [36] showed through empirical 
work that for large and sparse data, no standard approach for 
model assessment works, so they present a novel approach for 
model assessment. The goodness of fit criterion was designed to 
detect underfitting (overestimation). Knowing that the 
independence model always leads to overestimation, and that 
overestimation decreases as we add more and more dependencies, 
a forward search algorithm was used [36]: 

However, the approach in [36] is based on fitting the equivalence 

classes in the sample that are of size 1 (i.e., for 
j

f =1), as the risk 

they are mainly interested in is the risk due to sample uniques.  

The goodness of fit measure they developed [36] shows the 
impact of underfitting that is due to model misspecification. In 
other words, it represents the bias arising from the difference 

between the estimated 
j

γ , say 
j

γ
�

, and the actual 
j

γ  as follows: 

( )( ) ( ) ( )1 1
j j j

j

B E I f h hγ γ = = − ∑
�

 where ( )j
h γ  

is the disclosure risk due to uniques in the sample: 

( )
1

1

j

j

j

f

F
h

N
γ

=

= ∑ . 

In our case, since the risk measure entails the risk due to any 
equivalence class size, we generalized the Skinner-Shlomo 
goodness of fit measure to any fixed equivalence class size. We 
also generalized their method to cover all equivalence class sizes 
as described below. 

For every equivalence class size in the sample, say s, we search 
for the log-linear model that presents a good fit for these 
equivalence classes using an iterative method [36]. Once a good 
fit is found, we compute the portion of the risk that is due to the 

equivalence classes of size s, i.e. 

j

j

f s

s
F

N=

∑  . We repeat the 

procedure, fitting different log-linear models for every 
equivalence class size until we cover all class sizes present in the 



sample, at which time the overall risk would have been calculated.  
The goodness of fit measure that we use for the different 
equivalence class sizes is a generalization of the uniques goodness 

of fit 1B  introduced in [36]: 

If we denote by 
k

h  the disclosure risk due to equivalence class of 

size k , in other words ( )
j

jk

j

f k

k
F

h
N

γ
=

 
 

=  
 
 

∑ , then to 

measure the model misspecification in equivalence classes of size 

k  we use: ( )( ) ( ) ( )k k

k j j j

j

B E I f k h hγ γ = = − ∑
�

. 

2.4.3 Negative binomial model 

In this model, a prior distribution for 
j

γ  is assumed: 

j
γ ( ),

j j
Gamma α β∼ . The population cell frequencies 

j
F  

are independent Poisson random variables with mean 
j

Nγ : 

( )j j j
F Poisson Nγ γ= .  

It is often assumed that α  is constant with 1
J

αβ =
�

, thus 

ensuring that ( )1
j

E γ =∑ ,  

Bethlehem et al [37] considered only the case of sampling with 

equal probabilities, 
j

n p N=
�

. Under these assumptions we get:  

( )
( )11 1/

1/ 1 /

0

j
j

H f
f

jj

j j

j

j

N pH Np
P F H f

H f N N

H f

α
α β

β β

−+  −+ − +   
 = =      − + +    

≥ >

 The expected value of 1
j

F
 can be calculated from the above 

equation using the moment generation function 
j jF f

M  [39] as 

follows: { }
0

1
1 (1 )

jj j
ftf f t

j

j

E f e p p e dt
F

αα
∞

− −− + −
 

= − − 
 
 

∫  

Notice that the expected value of 1
j

F
 depends on α . 

The authors in [38] obtain an estimate for α , which includes 

estimating the variance for 
j

f  and the fact that  1
J

αβ =
�

. 

One of the difficulties of this model is the need to define the 

number of cells J�  in the population table. But since in most 

cases the population is not known, we used the estimator in [40] 

to estimate the number of classes J�  in the population. 

2.5 Empirical Comparison of Estimators 

Our objective is to evaluate the three methods described above for 

estimating the 1
j

F
 term in equation (1), and compare the 

performance of the resulting λ̂  marketer risk estimate relative to 

the actual marketer risk value. We therefore performed a 

simulation study to evaluate λ̂  using each of the three population 

estimators relative to the actual λ . 

 

Data Set Quasi-identifiers λ  

FARS: fatal crash 
information database 
from the department of 
transportation; n=27,529 

• Year (21) 

• Age (99) 

• Race (19) 

• Drinking Level (4) 

0.229 

Adult (US Census); 
n=30,162 

• Age (72) 

• Education (16) 

• Race (5) 

• Gender (2) 

0.104 

Emergency department at 
children’s hospital (6 
months); n=25,470 

• Postal Code – 2 
chars (105) 

• Age (42) 

• Gender (2) 

0.033 

Niday (provincial birth 
registry); n=57,679 

• Postal Code – 3 
chars (678) 

• Date of Birth - 
mth/yr (7) 

• Maternal Age (42) 

• Gender (2) 

0.687 

Pharmacy prescriptions 
for inpatients from a 
children’s hospital; 
n=3,507 

• Gender (2) 

• Age (22) 

• Postal Code – 3 
chars (154) 

• Length of Stay (89) 

0.75 

Table 1: Summary of the five data sets that were used for the 
simulation. The first column includes the number of records (the n 
value). The second column includes the quasi-identifiers and the 

number of equivalence classes that they have, and the third 
column is the actual value of marketer risk. The data sets were 

generalized to provide variation in the actual marketer risk value 
from quite low to quite high. 

 

The five data sets which we used in our analysis are summarized 
in Table 1. Each data set is treated as the population and two 
thousands five hundreds random samples were drawn from it at 
five different sampling fractions (0.1 to 0.9 in increments of 0.2). 

For each sample we estimated marketer risk and computed the 
relative error: 
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λ λ

λ
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=  ……………(3) 

The mean relative error was computed across all of the samples.  
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Figure 2: Graphs showing the relative error for each of the five data sets as we varied the sampling fraction from 0.1 to 0.9.  



3. RESULTS 
The results for the Adult data set in terms of the relative error 
(equation 3) are shown in Figure 2 for the three estimators. As can 
be seen, the log-linear modeling approach has a significantly 
lower relative error than mu-Argus and the Bethlehem estimators. 
This is the case across all sampling fractions and data sets. 

4. DISCUSSION 
Our results provide compelling evidence that, in the context of 
estimating marketer risk for a sample, the log-linear modeling 
approach is he most accurate in relative and absolute terms across 
multiple data sets of varying size and nature. 

4.1 Application of the Marketer Risk 

Measure 
An important question is how does a data custodian decide when 
is the expected proportion of records that would be correctly re-
identified too high ? We can provide some guidance based on 
precedents. Previous disclosures of cancer registry data have 
deemed thresholds of 5% and 20% of high risk records  as 
acceptable for public release and research use respectively [41-
43]. These can be used as a basis for setting acceptability 
thresholds for marketer risk values. 

Another practical consideration is that the modified log-linear 
modeling approach we have used is computationally intensive and 

for very large J  such a computation may not be feasible. In that 

case we recommend using the negative binomial estimator as it, in 
general, still outperforms the Argus estimator across the spectrum 
of sampling fractions. 

4.2 Relationship to Other Risk Measures 
Two other risk measures for identity disclosure have been defined 
[3]. The first is prosecutor risk, which is applicable when 

U D= , and is computed as: 
( )

1
minp

j
j

R
f

= . The 

second is journalist risk, which is applicable when U D⊂ , and 

is computed as: 
( )

1
minJ

j
j

R
F

= . In both of these cases the 

risk measure captures the worse case probability when re-
identifying a single record, whereas for marketer risk we are 
evaluating the expected number (proportion) of records that 
would be correctly re-identified. Another important difference is 

that marketer risk does not help identify which records in U  are 

likely to be re-identified. However, with journalist and prosecutor 
risk measures it is possible to identify the highest risk records and 
focus disclosure control action only on those. 

4.3 Controlling Marketer Risk 
Currently there are no algorithms specifically designed to control 
marketer risk. However, we can use existing k-anonymity 
algorithms to control marketer risk. 

Let’s assume that an intruder wishes to ensure that marketer risk is 
below some threshold, say τ . Then  
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Therefore, by ensuring that 
J

R τ≤  we can also ensure that the 

marketer risk is below that threshold. Any k-anonymity algorithm 
can be used to guarantee that inequality [3]. 

A disadvantage of using k-anonymity algorithms is that they may 
cause more de-identification than necessary. The marketer risk 

value can be quite a bit smaller than 
J

R  in practice. For 

example, consider a population data set with 3 equivalence classes 

{ }5, 20, 23jF ∈  and the sample consisting of uniques. In this 

case the marketer risk value would be half the 
J

R  value. 

Therefore, while using existing k-anonymity algorithms is a 
suitable approach for now, it behooves the research community to 
develop algorithms that directly manage marketer risk. 

4.4 When to Use Marketer Risk ? 
If an intruder has an identification database, he can use it for re-
identifying a single individual or for re-identifying as many 
individuals as possible. In the former case either the prosecutor or 
journalist risk metrics should be used, and in the latter case the 
marketer risk metric should be used. Therefore, the selection of a 
risk measure will depend on the motive of the intruder. While 
discerning motive is difficult, there will be scenarios where it is 
clear that marketer risk is applicable and represents the primary 
risk to be assessed and managed. 

One scenario involves an intruder who is motivated to market a 
product to all of the individuals in the disclosed database. In that 
case the intruder may use an identification database, say a voter 
list, to re-identify the individuals. The intruder does not need to 
know which records were re-identified incorrectly because the 
incremental cost of including an individual in the marketing 
campaign is low. As long as the expected number of correct re-
identifications is sufficiently high, that would provide an adequate 
return to the intruder. A data custodian, knowing that a marketing 
potential exists, would estimate marketer risk and may adjust it 
down to create a disincentive for such linking. 

A second scenario is when a data custodian, such as a registry, is 
disclosing data to multiple parties. For example, the registry may 
disclose a data set A with ethnicity and socioeconomic indicators 
to a researcher and a data set B with mental health information to 
another researcher. Both data sets share the same core 
demographics on the patients. The registry would not release both 
ethnicity and socioeconomic, as well as mental health data to the 
same researcher because of the sensitivity of the data and the 
potential for group harm, but would do so to different researchers. 
However, the two researchers may collude and link A and B 
against the wishes of the registry. Before disclosing the data, the 
registry managers can evaluate the marketer risk to assess the 
expected number of records that can be correctly matched on the 
common demographics if the researchers colluded in linking data, 
and adjust the granularity of core demographics to make such 
linking unfruitful. 



Consider a third scenario where a hospital has a list of all patients 

who have presented to emergency, D′ . This data is then de-

identified and sent to a municipal public health unit as D  to 
provide general situational awareness for syndromic surveillance. 
The data set does not contain any unique identifiers. But a breach 

occurs at the public health unit and say 10% of the records, U , 

are exposed to an intruder. The public health unit is compelled by 
law to notify these patients that their data has been breached. 

Because D  is de-identified, the public health unit would have to 
re-identify the patients first before notifying them, with the help of 
the hospital or at its own expense. The more patients that are 
notified the greater the cost for the public health unit and possibly 
also increases compensation costs. The simplest thing to do, and 
the most expensive one, is to work with the hospital to notify all 

of the patients in D′ . However, the public health unit can use 

U  to estimate λ̂  and determine whether matching the breached 

subset with the original data D′  from the hospital would yield a 

sufficiently high success rate. If λ̂  is high then the public health 

unit would request linking U  to D′  and only notify the re-

identified patients, which would be the most cost effective option 
that would be compliant with the legal notification requirement. If 

λ̂  is low then all patients in D′ , whether included in the 

breached subset or not, would be notified even though 90% of 
them were not affected by the breach. 

As a final scenario, detailed identity information can be useful for 
committing financial fraud and medical identity theft. However, 
individual records are not worth much to an intruder. In the 
underground economy, the rate for the basic demographics of a 
Canadian has been estimated to be $50 [44]. Another study 
determined that full-identities are worth $1-$15 [45]. Symantec 
has published an on-line calculator to determine the worth of an 
individual record, and it is generally quite low [46]. Furthermore, 
there is evidence that a market for individual identifiable medical 
records exists [47, 48]. This kind of identifiable health 
information can also be monetized through extortion, as 
demonstrated recently with hackers requesting large ransoms [49, 
50]. In one case, where the ransom amount is known, the value 
per patient’s health information is $1.20 [50]. Given the low value 
of individual records, a disclosed database would only be 
worthwhile to such an intruder if a large number of records can be 
re-identified. If the marketer risk value is small, then there would 
be less incentive for a financially motivated intruder to attempt re-
identification. 

4.5 Limitations 
The measure of marketer risk assumes exact matching. Exact 
matching is appropriate if there are no or few errors in the data. 
However, where there are many data errors an intruder may use 
probabilistic or distance-based matching techniques instead to 
obtain higher success rates. In such a case, the marketer risk 
measure would likely underestimate the proportion of records that 
would be correctly re-identified. 
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