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ABSTRACT
Published data is prone to privacy attacks. Sanitization
methods aim to prevent these attacks while maintaining use-
fulness of the data for legitimate users. Quantifying the
trade-off between usefulness and privacy of published data
has been the subject of much research in recent years. We
propose a pragmatic framework for evaluating sanitization
systems in real-life and use data mining utility as a universal
measure of usefulness and privacy. We propose a definition
for data mining utility that can be tuned to capture the
needs of data users and the adversaries’ intentions in a set-
ting that is specified by a database, a candidate sanitization
method, and privacy and utility concerns of data owner.
We use this framework to evaluate and compare privacy
and utility offered by two well-known sanitization methods,
namely k-anonymity and ε-differential privacy, when UCI’s
“Adult” dataset and the Weka data mining package is used,
and utility and privacy measures are defined for users and
adversaries. In the case of k-anonymity, we compare our re-
sults with the recent work of Brickell and Shmatikov (KDD
2008), and show that using data mining algorithms increases
their proposed adversarial gains.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; H.2.8 [Database
Management]: Database Application—Data mining
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1. INTRODUCTION
Many databases contain data about individuals that are

valuable for research, marketing, and decision making. The
main concern in releasing this data is the loss of individu-
als’ privacy. Data sanitization methods aim at making data
publishable while providing protection guarantees against
disclosures and at the same time maintaining the usefulness
of the data. Two required properties of sanitized data are
the usefulness of the data for data users, sometimes referred
to as utility, and protection of individuals’ information from
malicious users, referred to as privacy. There is a trade-off
between these two properties and sanitization methods need
to balance them.

Quantifying privacy and usefulness has been a long stand-
ing problem. One challenge is that privacy and utility are
scenario dependent. For example, utility in one scenario can
be exact predictions of a particular attribute for the whole
population, while in another scenario only approximate pre-
dictions for a specific group of users may be required. Simi-
larly, privacy requirement is scenario dependent: in one case
the same level of privacy is required for all users, while in
another a selected group of users need higher protection for
particular attributes.

Many well-founded schemes, such as ε-differential pri-
vacy [7, 8] and k-anonymity [23, 27], provide guarantees
only for privacy and not for usefulness, although the need
for usefulness, to “keep the data truthful”, has always been
recognized.

In practice, a data owner needs to choose a suitable saniti-
zation method among a number of possible alternatives for a
particular database such that some intended data users find
the data useful, while the privacy loss is below a defined
level. Here the notions of privacy and usefulness of data
are defined by the data owner and the data owner needs a
pragmatic and systematic way of comparing candidate san-
itization methods by quantifying their effect on privacy and
usefulness of data.

Here we provide a framework that can be specialized to
specific scenarios - modeling privacy and usefulness notions
and quantifying their levels for the given database - and so
providing a decision support mechanism for the data owner
to select the appropriate algorithm. It is worth emphasizing
that the power of the framework is in its adaptability to cap-
ture various notions of privacy, utility and adversarial power



for comparing sanitization systems for a particular setting.
The privacy and utility levels measured by the framework
must be interpreted in this context.

1.1 Our Contribution
We propose a pragmatic framework to evaluate and com-

pare sanitization methods. The centerpiece of this frame-
work is a set of data mining algorithms that learn patterns
and properties of data. This knowledge can then be used
by data users for legitimate purposes and by privacy adver-
saries for disclosing private and sensitive information about
individuals in the database.

We propose a definition of utility for data mining algo-
rithms and use it to quantify both privacy and usefulness of
the sanitized data. We define utility of a mining algorithm
when applied to sanitized data in terms of the predictions
that it can make about the original data. We model the util-
ity of data users using weights for records in the database to
show the relative importance of the record, and an appro-
priate error function to show the “cost” of making errors in
predictions. This is called “good utility”. The utility func-
tion can also be used to express utility of an adversary by
measuring correct predictions of sensitive attributes for in-
dividuals in the database. This is called “bad utility”. The
proposed definition of utility is powerful in the sense that
it provides a flexible way of modeling, (i) the utility of le-
gitimate data users, and (ii) the gain of real-world privacy
adversaries in attacking published data sets.

Evaluation of sanitization methods will be with respect
to, (i) a target database, (ii) a specific set of miners, (iii)
the requirements of data users captured by the “good util-
ity”, and (iv) a specific privacy concern of the data owner
captured by the “bad utility”. In other words, the evalu-
ation will be with respect to scenarios that consist of the
above four components. The set of data miners used by the
users and the adversary can be different. This means that
the result of the evaluation could change when the scenario
changes. This is natural given the variety and complexity of
privacy and utility notions in practice, and the fact that data
owners will be mainly concerned about their own database.

We focus on a single database. In practice the adversary
may have access to other databases which would increase
his/her prediction capabilities. We leave the challenging
question of considering the effect of (auxiliary) information
from other sources on privacy of data for future work.

We show the power and effectiveness of our framework
through a number of experiments. We first consider a com-
parison of k-anonymity [23, 27] and ε-differential privacy [7,
8] when used as a privacy enhancing mechanism for publish-
ing the data from a database. We present the usefulness of
the data in terms of classification accuracy that we express
using our proposed utility measure. Similarly, we present
privacy in terms of better predictions about the identifying
attributes given the sanitized data, again expressed using
our proposed utility measure.

The results of our experiments show how the performance
of the two sanitization methods depends on the scenario at
hand; that is, on the given database, set of miners, and on
the definition of good and bad utilities. The results of the
experiments confirm the difficulty of making general state-
ments about comparing sanitization methods.

Our approach to evaluate sanitization methods is prag-
matic and can be seen as providing a decision support mech-

anism for data owners who are faced with the question of
which sanitization method is more suitable for their “pur-
pose”. Using the framework proposed in this paper, data
owners will be able to estimate the risks involved with each
choice. Our framework allows these differences to be sys-
tematically taken into account.

Using data mining as the primary tool of the adversaries
and data users is a good approximation of how sanitized
data is used by the legitimate users as well as how it is com-
promised by the adversaries. Data mining adversaries cap-
ture a large class of automated attacks on published data
sets and hence our framework provides a baseline evalua-
tion method for evaluating privacy guarantees afforded by
sanitization methods. By expanding the set of data miners
one may consider a wider class of attacks and thus a privacy
guarantee against stronger attackers.

Privacy evaluation using data mining considers the san-
itized data as a whole, and not individual records, and so
allows discovery of hidden patterns and trends in the data.
This is a strategy that is available to the adversary. We
note that although not all adversarial strategies can be cap-
tured using a finite set of miners but the approach provides
a first step towards a framework for systematic comparison
of privacy and usefulness of different sanitization methods.

1.2 Related Work
The trade-off between the data mining utility and pri-

vacy for anonymization methods is considered in [4, 21].
These works however do not consider privacy against at-
tackers with access to data mining algorithms.

In particular, Brickell and Shmatikov [4] recently studied
the trade-off between privacy and utility of k-anonymization
and some of its derivatives. A natural question is how their
results compare with the framework proposed in this paper
when applied to k-anonymity. (We note that our framework
is general and applicable to any sanitization system and the
comparison is only for the special case that the framework
is applied to k-anonymity.) To answer this question, we ex-
press Brickell and Shmatikov’s measures in our framework–
Section 3. The utility measure in [4] can be expressed in
terms of our proposed utility measure. The privacy measure
in [4] is the “gain of the adversary” measured in the terms
of reduction in their uncertainty, after seeing the sanitized
database. By applying their definition of adversarial gain
to the “predicted database”, that is, the approximation of
the original database reconstructed from the sanitized one
by applying a data mining algorithm, we show that the real
adversarial gain is in fact higher than what is predicted by
their work. This indicates the importance of considering
adversaries using data miners in the evaluation of privacy.

The need to consider semantic privacy which captures the
shift in adversarial knowledge has been also recognized in
randomized/perturbation models [9, 17]. The usefulness of
sanitized data is evaluated using data mining utility in per-
turbation/randomized response methods [2]. All of the sani-
tization mechanisms that we know of are targeting a specific
mining goal (in contrast to our work that allows scenario de-
pendent goals). For anonymization methods, the usefulness
of the data is mostly measured syntactically (as the number
and amount of generalizations), but classification accuracy
is also used as a measure in [10, 4, 25, 26]. We have also
used data mining not to measure privacy, but to attack the
privacy and make disclosures from sanitized data [24].



Data sanitization can be used to publish data that con-
tains information about individuals. One approach, com-
ing from statistical databases and interactive randomized
response models, is to randomize (for example, add noise
to) the values of individual records, and only release these
records [1, 2, 9, 11, 29, 30]. The amount of noise can
be limited using privacy notions, such as ε-differential pri-
vacy [7, 8], which we briefly discuss in Section 4.2. The
other common approach, called anonymization, involves re-
leasing records while making individuals hard to distinguish
by masking (generalizing and suppressing) their identify-
ing values: k-anonymity [22, 23, 27, 6] is a well-researched
method [10, 13, 16, 18, 19, 20, 12]. We again briefly discuss
k-anonymity in Section 4.2. Other work in data anonymiza-
tion includes `-diversity [15], p-sensitive k-anonymity [28],
(α, k)-anonymity [32], t-closeness [14], and others.

2. FRAMEWORK
We concentrate on privacy of large amounts of data that

are used for data mining. The general scenario is depicted
in Fig. 1. We start by defining the key components of the
framework, then model the real-world adversaries and end
users using the same methodology, and finally propose prac-
tical and versatile measures that capture these ideas.

Figure 1: Scenario

The data from users can be horizontally or vertically par-
titioned and is collected by a trusted data collector in a
single collection. The data collector becomes the single data
owner, who is responsible for protecting the privacy of the
data and for allowing the data to be used for legitimate pur-
poses. A mining user (user of the data mining results) is
an entity that wants to perform some data mining over the
data collection. The mining user represents an end user of
the data that wants to use the data for legitimate research or
testing purposes. An adversary is just another mining user,
differing in the mining task, goal, and idea. The adversary
represents an end user whose aim is malicious.

The users supplying the data and the data owner have
“privacy ideas”, while the mining user has a “utility idea”. A
privacy idea captures the collective privacy wishes and ex-
pectations of the data owner and data supplying users about
disclosing the data or parts of it. A utility idea refers to the
usefulness of the results of data mining for the mining user.
A malicious idea (malicious utility idea) refers to a utility
idea that is in contradiction to any privacy idea of any data
owner. In this sense, the adversary is a mining user whose
utility idea is malicious, that is, it is in contradiction with
the legitimate use of the data captured in the privacy and
utility ideas. To achieve the malicious idea, the adversary
may use some auxiliary information, which is some data that

by itself does not violate the privacy ideas, that is, by itself
it is not a disclosure. In contrast to others, we do not assume
any auxiliary information. Even without any auxiliary infor-
mation or background knowledge, we show that data mining
can be used to measure privacy loss.

The data should be provided for data mining purposes to
satisfy the utility idea of the mining user, yet it should be
sanitized in order to satisfy the privacy ideas of the data
owner and counter the malicious ideas of any adversary.
A sanitization mechanism is a privacy-preserving algorithm
that transforms and releases the original data that may con-
tain sensitive values and relations in a way that preserves
and protects the privacy of these sensitive values and re-
lations. In this framework, the sanitization is performed
by the data owner before the query results obtained from
the data leave the data collection. The sanitized data may
then be accessed in one of two models of interaction: non-
interactive and interactive models [7]. In the first model,
the sanitized data is published and becomes accessible by
the public, while in the second model users can only access
the data through a sanitization mechanism that transforms
the responses to individual queries before delivering them to
the user. We define a model that captures these ideas, and
measures the privacy and usefulness using the same method-
ology but reflecting the choices, decisions, and purposes of
the data defined by the data owner.

2.1 Modeling the Privacy and Utility Ideas
The core component of our framework consists of data

mining algorithms. They are used for measuring and estab-
lishing both usefulness and privacy. We use the data mining
utility to capture both the needs of mining users and inten-
tions of adversaries.

We model the “privacy idea” of the data owner as a bad
utility Ubad. We also refer to this bad utility as an anti-utility.
The bad utility Ubad reflects the possibility of obtaining pro-
tected information that the data owner is trying to keep
private, and such a possibility is bad for the owner. This in-
cludes information such as identities or sensitive values and
the relations among them. The information is theoretically
obtained as a result of using any data mining algorithm over
the data sanitized with a sanitization mechanism S. In prac-
tice, we consider a reference set of data mining algorithms
that are likely to be utilized by an adversary. For example,
the already mentioned Weka data miner collection [31] can
be used with very little knowledge about data mining and
thus can be easily used by expert or non-expert adversaries,
like reporters or noisy kids. For privacy reasons, we want
the value of such information to be low, hence the bad utility
Ubad should be small.

We model the non-malicious “utility idea” of the mining
user as a good utility Ugood. It reflects the usefulness of
the data mining results that are not in contradiction to the
“privacy ideas”, that is, they do not disclose protected in-
formation and relations. The results are obtained using a
single fixed data mining algorithm operating over data that
has been sanitized by a sanitization mechanism S. Obvi-
ously, the mining user wants this utility value to be high,
preferably as high as obtainable from the unsanitized origi-
nal data.

The data owner classifies a sanitization mechanism S as
satisfying the privacy and utility ideas, if the good utility
Ugood for satisfying the utility idea of the mining user is ac-



ceptably high, and the anti-utility Ubad, representing the pri-
vacy idea of the data owner, is below a threshold of his/her
choice. This notion for privacy and utility fits the concept
of a relative privacy guarantee [7], and at the same time
it conforms to the need of looking for useful triples (utility
definition, sanitization mechanism, data miner) [25]. The
measures of utility, acceptable level for good utility and the
threshold for anti-utility are all choices of the data owner.
Thus the statements about the usefulness or the privacy
guarantees of the released sanitized data are dependent on
these choices and the data, and general statements about a
sanitization method may be contradictory and misleading.

2.2 Sanitization and Prediction
We model the database of the data owner as a universe of

tuples D = D1 × · · · ×Dn, where the Di’s denote some do-
mains. An element x = (x1, . . . , xn) ∈ D is called a tuple and
a coordinate xi of x is referred to as a field. A database is a
finite subset of D, denoted as DB. The symbol ⊥ represents
a missing value and ⊥ ∈ Di for all 1 ≤ i ≤ n, that is, we
allow incomplete tuples or, in other words, databases that
are missing some fields for some tuples. This all corresponds
to the relational database concept.

A sanitization mechanism S is a randomized algorithm
that for a database DB and query f returns a transforma-
tion of the query result f(DB) that conforms to the pri-
vacy guarantee of S. A privacy guarantee of S is a no-
tion, a description of what is meant and provided by the
sanitization mechanism and how sensitive data, identities,
and sensitive relations are protected by S. Allowed queries
for S depend on S itself. For example, k-anonymity can
be modeled as using only “select all” queries, while saniti-
zation mechanisms protecting statistical databases can be
seen as allowing only statistical queries. ε-differential pri-
vacy allows queries that map the database to real values.
We assume that the sanitization algorithm and its param-
eters are known to the adversary, while the database DB
and the randomness used during sanitization is private to
the data owner. For simplicity, in the rest of the paper, we
concentrate on the non-interactive scenario, one where the
query preserves the structure of DB after sanitization. Fur-
thermore, we assume that no records are suppressed during
sanitization, and so there is a one-to-one correspondence be-
tween DB and its sanitized version. Then by S(DB), S(x),
and S(x)i, we denote the database DB, tuple x, and field
xi, respectively, after sanitization.

A data miner or simply a miner Mi is an algorithm. Its
input is a database DB and a tuple x. The miner Mi de-
termines trends and patterns in the database DB and based
on them it outputs the prediction of the i-th field for the
tuple x, denoted as x̂i. The true value of the i-th field is
denoted as x̄i. In addition, a data miner Mi can operate
over a sanitized database S(DB) and predict the i-th field
for a sanitized tuple S(x), that is, Mi(S(DB),S(x)) would

predict the i-th field value of S(x), denoted as Ŝ(x)i.

2.3 Measuring Utility and Utility Preserva-
tion After Sanitization

We first present definition and instantiation of the utility
of a particular data mining process, then we describe the
flexibility and versatility of the instantiation. We measure
good utility Ugood for only one field, denoted by index i.
This measure can be extended to multiple fields and their

combinations.
An error implication function Ei(x̂i, x̄i) weights the seri-

ousness of any occurring error for the utility. For example,
Ei(x̂i, x̄i) can be some value based on the predicted x̂i and
the true x̄i that accounts for the preferences of a user who
measures the utility. Note that we want the function Ei to
have a high value if there is no error, while it should be near
0 or even negative for serious errors. Such a choice reflects
the fact that higher utility values mean higher usefulness. In
addition, the user may be interested in tuples with a certain
interest factor, therefore the user decides on a weight func-
tion w(x) for each tuple x ∈ DB, where higher weights for
tuples show that the user is more interested in those tuples.

A utility of prediction can be measured for the original
unsanitized data and for the sanitized data:

U (orig)
good (DB,Mi) =

X
x∈DB

w(x)Ei

“
Mi(DB, x), x̄i

”
and,

U (san)
good (DB,S,Mi) =

X
x∈DB

w(x)Ei

“
Mi(S(DB),S(x)), x̄i

”
.

The error implication function Ei(x̂i, x̄i) and the weight
function w(x) allow the data owner to capture and effec-
tively model the needs of a large class of the mining users.
For example, classification accuracy can be captured using
Ei(x̂i, x̄i) = 1 if the two inputs are equal and 0 otherwise,
and a constant weight w(x) = 1. The utility for a medi-
cal researcher interested in an early detection of a disease
mainly in a population of women above 55 can be captured
using Ei(x̂i, x̄i) = 1 if x̂i − x̄i ≥ 0 and 0 otherwise, that
is, she is accepting false-positive predictions, meaning she is
willing to test extra people for the disease, as testing and
prevention is cheaper than treatment. Further, she sets the
weight w(x) = 10 for all women above 55, and w(x) = 1
or w(x) = 0 for others, which represents her interest in the
population. Also, missing a correct prediction can be penal-
ized by selecting negative values for the proper cases in the
error implication function.

We now introduce the definition of a (1 − δ, L)-utility-
preserving sanitization mechanism S. Our definition guar-
antees that the sanitized data would be useful for research,
analysis, mining, and testing purposes. In the definition,
the utility decline δ ∈ [0, 1] can be seen as the decline of the
utility value in using any of the miners in the set L over the
privacy-preserved sanitized data compared to mining with
the same miners over the original unsanitized data. (1− δ)
is then the fraction that represents the utility preservation.

Since the data owner usually does not know in advance
what the mining users want to obtain, the owner measures
the usefulness using a few data mining algorithms repre-
sented in the set L that cover a wide range of possible users’
desires. The usefulness provided by these miners should pro-
vide usefulness of the data in general.

A sanitization mechanism S operating on a database DB
is said to be (1− δ, L)-utility-preserving if and only if

U (san)
good (DB,S,Mi) ≥ (1− δ) · U (orig)

good (DB,Mi) ,

for every miner Mi ∈ L and a user selected error implication
function Ei(x̂i, x̄i) and weight function w(x). In the case

when U (san)
good (DB,S,Mi) ≥ U (orig)

good (DB,Mi), we say that the
decline is δ = 0.

For the same miner or a set L of miners, the definition
of a (1 − δ, L)-utility-preserving sanitization mechanism al-



lows the data owner to compare sanitization methods and
their output on his/her database from the usefulness point
of view. Clearly, the smaller the utility decline δ, the higher
the utility preservation 1−δ, and the higher the value of the
released sanitized data for the mining users.

2.4 Measuring Privacy Breaches in Sanitized
Data Using Utility

Based on a reference set of miners M , we define the con-
cept of anti-utility. We describe the flexibility and versatility
of the definition and provide an instantiation. We measure
the anti-utility for only one field, denoted by index j to indi-
cate that the privacy is evaluated over a different field than
in the case of the usefulness evaluation. As in the previous
case, this measure can be extended to multiple fields.

An adversary may be interested in attacking the privacy
of the same field that is of interest to legitimate users. But
to achieve its goal, the adversary usually tries to reconstruct
the relations between the attacked field and other fields in
order to identify and “link” the individual. The results of
mining may not be what the adversary is looking for, but
the mining will help the adversary in achieving its malicious
goal. In case the adversary mines over the same field, it
necessarily learns the same amount as the legitimate user.
Therefore we consider what happens when the adversary
mines over a different field.

An error reduction function E∗
j (x̂j , S(x)j , xj) measures

the reduction of the given sanitized value S(x)j toward
the original value xj by considering the prediction x̂j =
Mj(S(DB),S(x)). The value of E∗

j represents the signif-
icance of reducing the uncertainty about the original value
xj by having a prediction x̂j . Higher utility values mean
higher usefulness, and so we want the function E∗

j to have a
high value if there is no or only a small error in prediction,
while it should be near 0 or even negative for serious er-
rors. Furthermore, an adversary may be interested in tuples
with a certain interest factor, and we model this by a weight
function v(x) for each tuple x ∈ DB. Note that this weight
function v(x) may be rather different from the weight func-
tion w(x) used for establishing the usefulness of the sanitized
data. The functions E∗

j and v can be seen on one hand as
describing and modeling the interests of adversaries, but on
the other hand also as modeling what the data owner wants
to protect.

A utility of privacy-impacting prediction obtained by a
miner Mj is then measured as

Ubad(DB,S,Mj) =X
x∈DB

v(x)E∗
j

“
Mj(S(DB),S(x)), S(x)j , xj

”
,

which may be seen as U (san)
good (DB,S,Mj) computed with a

different miner, over a different field, and using different
error and interest functions. These differences allow us to
model the adversary and distinguish it from the legitimate
mining user. For example, an adversary may be interested
in breaching the privacy for a selected few people (say, fa-
mous people or celebrities). The data owner can model this
behavior by increasing the interest weight v(x) for these par-
ticular people, which would indicate the data owner’s inter-
est in providing higher protection for these people. The data
owner can further model the adversary’s intentions by tun-
ing the error reduction function E∗

j , to capture whether an

adversary is interested in exact disclosures or partial, and
what kind of partial, disclosures. It should be noted that
it can be possible that an adversary’s interests and the in-
terests of a mining user are rather similar, which naturally
results in the anti-utility being similar to the good utility.
We avoid this case by assuming that the field i that is of in-
terest to a mining user is different than the field j that is of
interest to the adversary. We now introduce the definition

of a (U (avg)
bad , U (worst)

bad , Mj(worst))-privacy-loosing sanitization
mechanism, again for the field j.

The reference set of miners M = {Mj
1, . . . ,Mj

r}, consists
of data miners that predict the field indexed by j and can
be used to obtain privacy-implicating predictions. In prac-
tice, the set M consists of a collection of data mining al-
gorithms (under different parameters and including specific
pre-processing methods, such as sub-sampling or discretiza-
tion) that an adversary is likely to use to breach privacy.
The design and maintenance of this reference set is a chal-
lenging task. We discuss it in Sect. 4.4. Nevertheless, the
set M should contain optimal algorithms that cover large
classes of attacks.

The definition of Ubad and the reference set of miners M
allows us to define privacy through two anti-utility mea-
sures. Naturally, an adversary does not know which miner’s
results have the highest utility, and so we are performing a

worst-case analysis. The value U (worst)
bad represents the max-

imum anti-utility that an adversary can obtain. Since an
adversary may not know the miner Mj(worst) that attains
this maximum utility, the adversary may use all the miners,
which results in an average-case situation, and the average
utility that can be obtained using all the miners in M is

then denoted by U (avg)
bad .

A sanitization mechanism S operating on a database

DB is said to be (U (avg)
bad , U (worst)

bad , Mj(worst))-privacy-loosing,
where

U (avg)
bad (DB,S, M) =

1

r

rX
`=1

Ubad(DB,S,Mj
`) and

U (worst)
bad (DB,S, M) = max

`=1,...,r
Ubad(DB,S,Mj

`) ,

and where Mj(worst) is the miner that attains the highest

anti-utility U (worst)
bad .

Note that our privacy definition does not improve on the
privacy guarantees of a given sanitization mechanism, but
rather it captures the privacy ideas and guarantees of a san-
itization mechanism in a uniform and quantitative way. In
particular, we are measuring the utility of successful predic-
tions that are leading to disclosures and breaches of privacy
guarantees. Using this uniform way in measuring privacy
allows us (and the data owners) to compare different saniti-
zation methods using the same metrics and methodology.

One natural instantiation of the error reduction func-
tion is using a “nearness” of the prediction toward the

value in the database as follows: A prediction Ŝ(x)j =

Mj(S(DB),S(x)) is c%-nearer to the original value xj than
the sanitized value S(x)j if

∆j(Ŝ(x)j , xj) ≤
100− c

100
·∆j(S(x)j , xj) ,

where ∆j is a distance function and c ∈ (0, 100). We define
a 100%-nearer prediction as the exact prediction, that is,

Ŝ(x)j = xj . A 0%-nearer prediction, or just a nearer predic-



tion is like c%-nearer prediction with c = 0, but with strict
inequality in the definition (not less than or equal). Based
on this, the error reduction function E∗

j can simply have a
high value, e.g. 1, if a prediction is c%-nearer and low value,
e.g. 0, otherwise.

Using the reference set of miners M , the data owner can
perform the mining and obtain c%-nearer predictions for
a choice of c and interest weights v(x). The definition

of a (U (avg)
bad , U (worst)

bad , Mj(worst))-privacy-loosing sanitization
mechanism then allows the data owner to compare saniti-
zation methods and their output on the database from the
privacy point of view. Clearly, the higher the anti-utility

values U (avg)
bad and U (worst)

bad , the higher the risk of disclosures.

3. RELATING ADVERSARIAL GAINS TO
OUR FRAMEWORK

Considering and measuring the shift in adversarial knowl-
edge before and after the adversary sees the sanitized data
has been recognized in random-perturbation sanitization
methods [9]. For anonymization methods, the privacy has
been traditionally measured syntactically (as the number
and amount of generalizations/sanitizations). Measuring
privacy semantically as an adversarial gain has been first
considered for `-diversity [15] and again recently by Brickell
and Shmatikov [4]. We relate the adversarial model of the
latter work to our framework, because it also considers the
balance between utility and privacy. We note that the model
is only usable for k-anonymity-like anonymization methods,
while our framework allows for any sanitization method.

Following are the adversarial knowledge and accuracy
gains proposed in [4] described using our notation and fitted
into our framework: Suppose that a database DB contains
only a single sensitive field and that its possible values are
s1, . . . , st. Let p(A, s) denote the fraction of a set of tuples
A that contains the sensitive value s, that is, the probabil-
ity that a randomly chosen tuple of A has the value s. By
〈S(x)〉 we denote the set of tuples from S(DB) that have
the same combination of “quasi-identifying” (QI) values.
Quasi-identifying attributes are non-identifying attributes,
but their combination can be used to identify an individ-
ual [23]. Let R denote the set of all representatives S(x) of
these sets 〈S(x)〉’s such that S(DB) =

S
S(x)∈R〈S(x)〉. Fi-

nally, we denote by Ŝ(DB) the sanitized database that in-

cludes predictions obtained by Mj(worst). Similarly, we then

use the notation of 〈Ŝ(x)〉 for the set with the same QI’s andbR for the representatives.
The incremental gain in an adversary’s knowledge be-

fore and after seeing the released sanitized database S(DB)
is measured as the “adversarial knowledge gain” [4] Aknow

which can be represented in our framework by our anti-
utility function Ubad. Aknow = Ubad(DB,S,Msensitive

know )
using the weight function v(x) = 1 for those x with
S(x) ∈ R, and v(x) = 0 otherwise, and using the error
reduction function E∗

sensitive(x̂j , S(x)j , xj) = x̂j/|S(DB)|,
where the prediction x̂j is obtained using a theoretical
miner Msensitive

know (S(DB),S(x)) that knows the distribution
of the sensitive values in DB, and returns the value of
1/2

Pt
i=1 |p(DB, si)− p(〈S(x)〉, si)|.

We extend this model by measuring the adversarial knowl-

edge gain over the sanitized data with predictions Ŝ(DB).
In this case, Ubad(DB,S,Msensitive

know−new ) is computed using

v(x) = 1 for those x with Ŝ(x) ∈ bR and v(x) = 0 otherwise,

and using E∗
sensitive(x̂j , S(x)j , xj) = x̂j/|Ŝ(DB)|, where

x̂j = Msensitive
know−new (S(DB),S(x)) = 1/2

Pt
i=1 |p(DB, si) −

p(〈Ŝ(x)〉, si)|. Similarly, it is possible to capture and extend
the “adversarial accuracy gain”Aacc, proposed in [4].

Our experimental results, presented in Sect. 4.4, show that
the adversary always gains more after our privacy attack us-
ing data mining than before. In other words, our work can
be seen as an extension of Brickell and Shmatikov’s adver-
sarial model, an extension which uses the same measures but
now additionally takes data mining attacks on privacy into
account. In this sense, the new privacy loss that needs to

be considered is the adversarial gain computed over Ŝ(DB),
also depicted in Fig. 2.

Figure 2: Extending the Brickell and Shmatikov’s
adversarial gain model by applying the measures to
the sanitized data after including nearer predictions

In addition, we note that Brickell and Shmatikov’s useful-
ness model is captured in our framework. Their measure of
the usefulness of the sanitized data is classification accuracy,
which can be easily modeled using our good utility concept
and our definition of (1−δ, L)-utility-preserving sanitization,
as outlined in Sect. 2.3.

4. EXPERIMENTAL RESULTS
We simulate the problem of a data owner who needs to

decide which sanitization method applied to his/her data
provides better privacy and usefulness. We compare k-
anonymity and ε-differential privacy. We use both methods
in the non-interactive mode to produce sanitized versions
of the UCI’s Adult database for different values of k and ε.
To perform an evaluation of the privacy and usefulness, we
use data miners from the Weka package, which are readily
available and can be used even by non-expert attackers.

Our experiments demonstrate that data mining can be
successfully used to attack privacy and make privacy-
impacting predictions. We consider several scenarios, where
an attacker is interested in breaching privacy for (and hence
the data owner is interested in protecting) selected individu-
als or all individuals, against partial or exact disclosures. In
these scenarios, we demonstrate that it is impossible to make
a general privacy statement about a sanitization method.
This is because privacy depends on a database and many
choices and decisions made by the data owner about the
purpose of releasing the data and about the required level
of protection.

We measure the usefulness of the released sanitized data
in the terms of data mining utility rather than syntactically.
As expected and previously shown [10, 13], we also confirm
that the good utility of the sensitive attributes in the sani-
tized data can be preserved, that is, its decline is acceptable
considering the privacy gains. Although the same data was



used, this result is in contrast to [4], where the utility of
non-sensitive attributes was measured.

In our experiments we do not assume any auxiliary or
background-knowledge information that may be available to
the adversaries. Rather, we evaluate the privacy based only
on the available sanitized data. Although it does not allow
us to make blanket statements about sanitization methods
in general, this is a practical way of evaluating threats to
privacy from a large portion of real-life adversaries.

4.1 Data
We performed our experiments on the Adult data from

the UCI Machine Learning Repository [3] which is the de
facto standard for experiments in sanitized data publishing.
The data consists of 45,222 records. We prepared the data
as proposed in [10]. That is, we removed the records with
unknown values and kept the following attributes: age, work
class, education, marital status, occupation, race, gender,
native country, and salary. Age covers all the integers from
17 to 99. Salary is a binary attribute (over or below and
equal to $50K). For brevity we do not describe the other
domains, but they can be found in [10].

4.2 Sanitization
We apply two distinct sanitization methods to the data:

k-anonymity and ε-differential privacy. The former one is
achieved by generalizations and/or suppressions, the later
one by additive-noise perturbation. The former one’s pri-
vacy guarantee is syntactic, the later one’s semantic. The
former one’s utility is measured as the number and amount
of generalizations and suppressions, but no data mining util-
ity is considered, and the later one’s utility idea is to approx-
imate the original data distribution and use it for specific
data mining tasks.

k-anonymization. k-anonymity [23, 22, 27] is a notion
that quantifies the privacy risk and specifies the require-
ments for publishing a database in order to limit the linking
attack. The linking attack [23] is an attack where a priori
knowledge from another source or database can be used to
identify an entity in a released database.

A database to be released contains some sensitive
attributes, identifying attributes, and so-called quasi-
identifying attributes. Quasi-identifying attributes are non-
identifying attributes, but their combination can be used to
identify an individual in a linking attack.

A released database is said to satisfy k-anonymity (is
k-anonymized) if for each existing combination of quasi-
identifying attribute values in the database, there are at
least k − 1 other records in the database that contain such
a combination. There are several methods to achieve k-
anonymity [22, 27]. The basic techniques use hierarchi-
cal generalizations and cell suppressions. The released k-
anonymized database has all the identifying attributes sup-
pressed and contains unmodified sensitive attributes.

The privacy idea is syntactic, that is k-anonymity does
not capture the shift or gain in the adversary’s knowledge.
The k-anonymity guarantee is that an identified individual
in the database is indistinguishable from at least k−1 other
individuals. However, k-anonymity lacks the guarantee that
an identified individual can be linked to a sensitive value –
the homogeneity and the background knowledge attacks [15]
are still possible. There are many extensions of k-anonymity
that overcome this and provide additional privacy measures,

please see the Related Work section for references.
There is no explicit utility idea captured in the k-

anonymity notion. In fact, suppressing all the identifying
and quasi-identifying attribute values, that is, publishing
just the sensitive values, satisfies the k-anonymity definition
(for any 2 ≤ k ≤ n, where n is the number of records).
A recent result [4] shows that, in most cases, this triv-
ial k-anonymization provides equivalent data-mining utility.
Regardless, the released data is supposed to be a valuable
source of information for research, statistical analysis, or
data mining. The concept of optimal k-anonymity [20] is
concerned with the achievement of a k-anonymous data re-
lease while minimizing the number of cell suppressions or
number and amount of generalizations. Although these re-
sults were developed for showing the hardness of the k-
anonymization process, they can be seen as sanitization
mechanisms that preserve the usefulness of the released data.

To achieve k-anonymity, we decided to use a recent k-
clustering algorithm [5], because it strives to minimize the
number of necessary generalizations through creating clus-
ters of at least k records while minimizing the sum of clus-
ter diameters. Our sanitization algorithm S was the pro-
posed greedy k-clustering algorithm [5, Fig. 5]. It does not
suppress any cells nor records. Our quasi-identifying (QI)
attributes were all the attributes except salary, which was
considered to be a sensitive attribute.

Selecting all but the sensitive attribute as QI-attributes
is common, because it provides the maximum protection
against any linking attack with any subset of the QI-
attributes. On the other hand, it requires more generaliza-
tions and/or suppressions during sanitization, thus possibly
negatively affecting utility. Our experiments show that the
utility decline is negligible.

During k-anonymization, the values of the attribute age
were generalized into intervals of length 5 (0-4, 5-9, . . . ),
then into length 10 (0-9, 10-19, . . . ), then into length 20
(0-19, 20-39, . . . ), then into length 50 (0-49, 50-99) and fi-
nally suppressed into length 100 (0-99). The taxonomy trees
that were used for generalizations of the other attributes
are omitted for brevity. We performed k-anonymization for
k = 2, 10, 50, and 100.

ε-differential privacy. Perturbation methods mask in-
formation and relations by adding noise to the released val-
ues. The question of how much noise is necessary to achieve
privacy and utility was considered by Dwork et al. [8, 7] in
their notion called“differential privacy”: A randomized func-
tion S gives ε-differential privacy if for all data sets D1 and
D2 differing on at most one element, and all R ⊆ Range(S),
Pr[S(D1) ∈ R] ≤ exp(ε) × Pr[S(D2) ∈ R] ε-differential pri-
vacy is achieved by adding random exponential (Laplace)
noise to released numeric values.

The privacy guarantee of the ε-differential privacy is se-
mantic, that is, it considers the shifts and incremental gain
in the adversary’s knowledge. The ε-differential privacy no-
tion limits the probability that the randomized function S,
a sanitization function, would leak information from a data
set that is extended by at most one element.

The utility of the data released by an ε-differential privacy
mechanism is not well-defined. For example, consider a ran-
domized function S that on every input always outputs the
same constant. Such a function satisfies the ε-differential
privacy notion, as well as the similar ε-indistinguishability
notion [8], for every leakage ε ≥ 0. Yet the output of this



U (orig)
good U (san)

good of k-anonymized data U (san)
good of ε-diff.privacy data

Miner M k = 2 k = 10 k = 50 k = 100 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01
NaiveBayes 36,972 36,642 36,285 35,900 35,242 36,279 36,356 36,350 36,320
J48 (C4.5) 37,609 37,143 36,909 36,711 36,298 37,293 37,222 37,221 37,221
RandomForest 36,172 36,069 36,707 36,740 36,321 36,012 35,969 35,932 35,962

Utl. decline δ N/A 1.24% 1.86% 2.90% 4.68% 1.87% 1.67% 1.68% 1.76%

Table 1: Good utility and the highest utility decline for the three Weka miners

function S is useless for practical purposes, such as statisti-
cal analysis and knowledge discovery.

In our experiments, we used leakage ε = 0.5, 0.1, 0.05,
and 0.01. Then the ε-differential privacy for the numeri-
cal attributes was achieved by a sanitization mechanism S
that added to the original numerical values noise chosen ran-
domly from the Laplace distribution Lap(0, ∆f/ε) with the
probability density function h(y) = (ε/2) · exp(−ε|y|/∆f),
where ∆f is the sensitivity [7] of the query function f ,
and was ∆f = 82 for the attribute age (range 17-99) and
∆f = 16 for the attribute education (range 1-16).

4.3 Mining for Good Utility
We performed a classification of the binary attribute

salary. Our miners were the RandomForest, NaiveBayes,
and J48 (C4.5 decision tree) classifiers with the default set-
tings from the Weka 3.6.0 package [31]. This approach, data,
classifiers, and k-anonymization are the same as in the pre-
vious works in the field [15, 14, 4]. In addition, we also
considered another sanitization – the ε-differential privacy –
and evaluated the perturbed data with the three mentioned
classifiers. Although it is impossible to know in advance
what the real mining users of the sanitized data want to ob-
tain, we measure the usefulness of the sanitized data using
these three data mining algorithms under the assumption
that using miners based on similar concepts (Bayesian or
tree methods) would provide a comparable usefulness.

For all three miners, we considered the classification accu-
racy. We used the Weka’s default 10-fold cross-validation to
evaluate the accuracy and compute the utility. Our util-

ity functions were U (orig)
good and U (san)

good with weight function

w(x) = 1 for all x ∈ DB and the following error impli-
cation function that simply captured the classification accu-
racy: Esalary(x̂salary, x̄salary) = 1 if x̂salary = x̄salary and 0
otherwise.

The utility obtained from mining over the original unsan-
itized data as well as over the sanitized data is in Table 1,
together with the decline of the utility that was the highest
among the three Weka miners.

Discussion. For privacy reasons, the QI-attribute set was
selected to be maximal, which consequently resulted in more
generalizations compared to the case when the set of the QI-
attributes would be smaller. Even with the higher number
of generalizations, the utility of k-anonymized data declined
at most by 4.86%, which can be seen as an acceptable de-
cline considering the privacy gains. The results also show
that the higher the parameter k (that is, the stronger pri-
vacy guarantee is requested), the higher the utility decline.
This supports the hypothesis that there is a trade-off be-
tween privacy and utility. In some cases, the utility of min-
ing over the sanitized data is slightly higher than the utility
of mining over the original data. This is likely due to the
fact that k-anonymity’s generalization smooths the data and

hence removes some outliers. Overall, k-anonymity achieved
through the greedy k-clustering algorithm on the Adult
data is (δ = 4.68, L = {NaiveBayes, J48, RandomForest})-
utility-preserving.

The utility decline for the ε-differential privacy perturbed
data is at most 1.87%. The lower utility decline compared
to k-anonymity is the result of the fact that only two at-
tributes, age and education, are numerical and were per-
turbed. This is an inherent consequence of a compari-
son of different sanitization methods over the same data.
There is no trend supporting the hypothesis of the trade-
off between privacy and utility, as it was in the case of
k-anonymity. Overall, ε-differential privacy achieved by
noise-addition with noise from a Laplace distribution is
(δ = 1.87, L = {NaiveBayes, J48, RandomForest})-utility-
preserving.

From the utility point of view, when using the three Weka
miners, the ε-differential privacy is a better alternative than
k-anonymity, because for the same miners it has a lower
utility decline. We have measured only the classification
accuracy and have not exploited all the possibilities of our
utility definition. In different scenarios, such as the medical
scenario briefly described in Sect. 2.3, using different data,
or using a different set of miners, it may turn out that the
declines are different and that k-anonymity is better than
ε-differential privacy.

4.4 Mining for Anti-Utility to Measure Pri-
vacy

We were interested to see if we can predict a nearer value
of the attribute age, where the nearness depends on our
scenarios.

Reference set of miners. For predicting categori-
cal values, such as age that has been generalized into in-
tervals, we selected some of the miners available in the
Weka 3.6.0 package [31]. Our reference set Mcategorical

of miners used to try to predict nearer categorical val-
ues consisted of the following 32 miners: bayes (AODE,
AODEsr, BayesNet, HNB, NaiveBayes, NaiveBayesSim-
ple, NaiveBayesUpdateable, WAODE), functions (RBFNet-
work, SMO), lazy (IB1, IBk, KStar, LWL), rules (Conjunc-
tiveRule, DTNB, DecisionTable, OneR, Ridor, ZeroR), trees
(DecisionStump, Id3, J48, J48graft, REPTree, Random-
Forest, RandomTree, SimpleCart), misc (HyperPipes, Min-
MaxExtension, OLM, VFI). Our reference set Mnumerical

of miners, used to try to predict nearer numerical val-
ues, consisted of the following 10 miners from the Weka
3.6.0 package [31]: functions (RBFNetwork), rules (Con-
junctiveRule, DecisionTable, M5Rules, ZeroR), trees (De-
cisionStump, M5P, REPTree), functions (LeastMedSq, Lin-
earRegression). All the miners that we selected were used
with their default options, but the memory available to the
Java virtual machine was increased to 2 GB. Although only
default settings and no optimizations were used, the experi-



San. S: k-anonymity ε-differential privacy
k = 2 k = 10 k = 50 k = 100 ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

A: U (avg)
bad 316.6 135.7 22.2 4.4 43487.7 43832.0 43425.8 43430.8

U (worst)
bad 630 322 185 77 44383 44729 44741 44729

M(worst)
age LWL OLM VFI OLM ZeroR ZeroR RBNF. ZeroR

B: U (avg)
bad 0 0 0 0 1046.5 598.67 293.83 104.5

U (worst)
bad 0 0 0 0 1341 943 780 608

M(worst)
age N/A N/A N/A N/A RBNF. Dec.Stump Dec.Stump Dec.Table

C: U (avg)
bad 192.6 90.3 16.0 3.2 2200.8 2193.5 2159.2 2159.3

U (worst)
bad 389 199 121 57 2242 2261 2261 2261

M(worst)
age LWL OLM VFI OLM ZeroR ZeroR ZeroR ZeroR

Table 2: Anti-utility and the miner that attains the maximum anti-utility for three scenarios A (all nearer
predictions), B (exact predictions), and C (protection of selected 5% people)

ments clearly show higher adversarial gains than previously
thought and therefore the importance of considering data
mining as a tool for privacy evaluation.

In practice, the selection of miners is a choice of the data
owner. We elected to choose miners from the Weka package
because of their availability and ease of use, and therefore a
likelihood that an adversary would do the same. However,
the selection of the reference miners can be influenced by
the type of data and the organization that collects them. In
any case, the reference set of miners should be updated to
reflect the progress and advances in data mining technology,
and to keep up with the possible adversaries. Of course,
using more miners, refined parameters, pre-processing (such
as sub-sampling and/or discretization), and predicting over
more attributes than just age can lead to additional privacy
loss. It is impossible to avoid all privacy attacks and ad-
versaries, and in this sense, evaluating privacy using such a
reference set of miners estimates the threat to privacy based
on the adversaries that are likely to use these or similar
miners. For instance, using available and easy-to-use miners
such as the ones from Weka would measure the threat to pri-
vacy coming from the equivalent to so-called script-kiddies
– adversaries that use ready-to-use tools and scripts.

Scenarios. We used the following three scenarios that
an data owner may choose to model an adversary’s inten-
tions: The data owner is interested in protecting (A) all the
individuals equally against any partial disclosure, that is,
against any nearer prediction; (B) all the individuals equally
against exact disclosures, that is, against 100%-nearer pre-
dictions; and (C) a selected 2261 (5%) individuals, that is,
the owner chooses the weight v(x) = 1 for them and v(x) = 0
for the rest of the population. These scenarios are modeled
using the interest weight function v(x), using the nearness
concept as the error reduction function E∗

age, and the param-
eter c for c%-nearer predictions. The distance function ∆age

used in the “nearness” concept was the Euclidean distance
function and a function computing the length of intervals,
respectively, for numbers and intervals. The error reduction
function E∗

age was set to 1 if a prediction was c%-nearer and
0 otherwise.

Table 2 summarizes the obtained results of our data
mining efforts to attack privacy of k-anonymized and ε-
differential privacy perturbed data for these three scenarios.
The table also represents the classification of k-anonymity
achieved through the greedy k-clustering algorithm and ε-
differential privacy achieved by noise-addition with noise

from a Laplace distribution on the Adult data using our def-

inition of a (U (avg)
bad , U (worst)

bad , Mj(worst))-privacy-loosing saniti-
zation mechanism.

Discussion. In all three scenarios, the k-anonymity is a
better sanitization method for releasing the Adult database
from the privacy point of view, because the anti-utility is
lower than it is for ε-differential privacy. k-anonymity ex-
hibits an expected trend – as k is increased (more privacy),
the anti-utility decreases (less risk of privacy breach). The
same trend is observable for ε-differential privacy in scenario
B, proving that higher leakage ε (more privacy) results in
fewer exact disclosures. This trend is not obvious for sce-
narios A and C in the case of ε-differential privacy – roughly
the same anti-utility is obtained regardless of the leakage
ε. This means that noise can be reduced (nearer prediction
obtained) for approximately the same population indepen-
dently of ε. Finally, the inability to obtain exact disclosures
for k-anonymity in scenario B was expected, as the origi-
nal age values were generalized into intervals, and miners
were only able to learn and predict shorter intervals but not
particular values.

In summary, k-anonymity is a better sanitization than
ε-differential privacy for the Adult database, for all three
scenarios, and the data owner selected parameters.

Comparison. Table 3 shows that the previously proposed
adversarial gain model [4], introduced in Sect. 3, does not
capture the attack on privacy using data mining – for all k’s,
the originally proposed adversarial accuracy gain as well as
the adversarial knowledge gain computed over the released
sanitized data S(DB) were lower than the gains computed

over the sanitized data containing nearer predictions Ŝ(DB)

that were obtained using Mage(worst). The original adver-
sarial gains cannot be used for measurements over the ε-
differential privacy perturbed data, only over k-anonymized
data.

San. S: k = 2 k = 10 k = 50 k = 100
Aacc of S(DB) 0.1084 0.0861 0.0658 0.0541

Aacc of Ŝ(DB) 0.1124 0.0898 0.0667 0.0546
Aknow of S(DB) 0.2763 0.2329 0.2053 0.1913

Aknow of Ŝ(DB) 0.2775 0.2357 0.2063 0.1919

Table 3: Adversarial gains of the released k-

anonymized data S(DB) and of the data Ŝ(DB) that
in addition includes all the nearer predictions ob-
tained by Mage(worst)



5. CONCLUSIONS
We proposed a pragmatic framework with the ability to

evaluate and compare sanitization methods using data min-
ing utility. It provides decision support for a data owner
to help decide which sanitization method is the best for a
given database based on the end user needs and an adver-
sary’s intentions (that the owner wants to defend against).
Our experimental results demonstrated that the previously
proposed adversarial gains over the sanitized data with pre-
dictions are higher than over the sanitized data without pre-
dictions.

We focused on motivating and defining the framework,
and providing practical evaluation. Several extensions of
our work are possible, as indicated throughout the paper.

An important question remains whether the proposed
framework and measures can be used in designing a ver-
satile sanitization method that considers both privacy and
utility and further takes into account the needs of the end
users and requirements of the data owners.
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