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ABSTRACT
Databases as a Service (DaaS) are recently in the spotlight
as an essential component of the cloud computing frame-
work. We can more easily develop applications to facili-
tate users' collaboration than without DaaS. Unfortunately,
DaaS brings a new risk of data compromise because most
data are currently stored and managed by the service provider.
Securing users' information, the data are generally encrypted
at a trusted client. Although encryption ensures that no one
can sneak a look at the data, malicious users still have oppor-
tunities to take users' relational information. The relational
information, which we name social information as opposed
to personal information, has not been adequately examined,
but it is becoming important because of improvement of
social analysis. As described herein, we �rst introduce an
attack model of obtaining social information from analyses
of query logs in DaaS; then we provide a solution to the
problem. Our method converts some di�erent queries in the
same query, so that malicious attackers cannnot analyze the
query logs. We also de�ne an overhead cost of the transla-
tion and propose a method that can optimize the conversion
using extensible hashing.

1. INTRODUCTION
Database as a Service (DaaS) is a component of the cloud
computing framework and it is attracting someone's atten-
tion. Nowadays major companies launch DaaS and many
innovative applications are using it. In the applications,
most of data are stored into servers and managed by ser-
vice providers. Users use them through the web. Therefore
if only they have a connection to the web, they can uti-
lize the applications whenever and wherever they are. Ad-
ditionaly DaaS has another feature: users can share their
data and easily collaborate with all over the world. The
possession enables to develop many new collaborative appli-
cations. However DaaS has a negative property. It brings
down a risk of compromise. The risk from DaaS is more
crucial than one from traditional database systems because
we cannot directly control their data. Actually some cases

such as a server is taken over by attacker and an operator
of a server opens con�dential by mistake are reported. Pre-
venting the compromise risk and providing safe DaaS are
essential challenge.

To guarantee the safety, there are three kinds of studies for
this purpose; 1) security of data stored in servers; 2) pre-
venting guess of data from query analysis; 3) protecting per-
sonal information of users such as interest or favorite from
query analysis. In the study of security of data, data are
encrypted at trusted clients before sending to the server.
Therefore even server cannot know what data are stored
but the server also cannot process queries. How to pro-
cess queries on the encrypted data is a main topic of this
research. For solving the problem, current encrypted data
have some indices for query processing [5, 4]. Another topic
of the study of security of data stored in servers is how to
share data stored in encrypted database. This topic is how
to share the encryption key between the authorized users.
Damiani et al. introduced a method of dynamically deriving
the encryption keys and reducing the number of keys each
user has to manage [1]. The second group of the studies;
preventing guess of data from query analysis is well known
for the problem of k-anonimity [8]. There are many kinds
of speci�c problems and solutions for them. There is a de-
mand of requesting data but keeping how data is requested
secret for servers. This demand is called as Private Infor-
mation Retrieval (PIR) [3] and PIR is the third category of
the studies.

In this paper, we add a new problem to the studies. It
is a problem of protecting social information. Social infor-
mation, which we think as opposite idea of personal infor-
mation identifying each person, has not been discussed yet.
However, many researches about social network from web
services are nowadays studied. Discussing security of social
information as privacy issue is therefore becoming signi�-
cant. We are not identi�ed by only social information but
organizational size, how organization work, our role in or-
ganizations may be leaked. We would not generally like to
take all association public therefore we must have a right of
deciding public or secret about social information as same
as personal information. Thinking about a scenario of using
DaaS, this service is used by not only individual but also
enterprise. In such case, organization structure is important
con�dential.

We �rstly introduce an attack model of social information.



For setting the model, we focus attention on query log and
presupposed users who send same and discriminative queries
have high relativity. Secondly, we discuss a method of query
alteration to conceal social information from the attack model.
In our proposal approach, some di�erent queries are rewrit-
ten to a same query using query transfer tree based on the
extendible hashing [2]. Finally we set a cost function and
use a property of extendible hashing, that is the distribu-
tion of the number of hash value stored in each leaf is �at,
to optimize the cost. Our contributions of this paper are
summarized as follows: 1) We raise a new security problem
about social information; 2) We introduce a concrete algo-
rithm of analyzing social information from query logs in the
DaaS scenario; 3) We propose a method of query conversion
to protect social information from query analysis.

2. ATTACK MODEL
Malicious attackers can obtain social information by analyz-
ing query literals and their frequency. The query literal is a
term in the query such as �Nov. 15, 2008� in the following
query: date = �Nov. 15, 2008�. In this chapter, we model a
type of data monitored by attackers and introduce a method
of computing users' similarity from the data.

We consider an application using DaaS. Let U be the set
of users who send requests to the server, and let L be the
set of literals received by the server. An attacker peeping
requests can count how many literal l ∈ L are sent by the
user u ∈ U : the attacker has a logging function of

Log : U × L −→ Z. (1)

We next introduce a method of calculating similarities from
the observed data using a query feature vector for a method
of extracting social information. Analysis of user similarity
using a query feature vector presupposes that users who sent
the same request have a relation. For example, users who
ask an event at a particular date and place have an inter-
est: they have a relation in this meaning. Analyses of user
similarity calculate frequencies for how a user pair sends the
same query and extracts a user pair to which they have high
similarity. The query feature vector of a user is calculated
using the frequency of the literals in requests from that user.
The attacker observes how many users u sent a literal l as
Log(u, l) described above. The user frequency of the literal
l: ufl, which is how many users sent the literal, is calculated
using the following formulation.

ufl =
X
u∈U

(
1; if Log(u, l) 6= 0

0; otherwise

For the weight of a user u and a literal l; wu,l is de�ned as

wu,l =
Log(u, l)

ufl
.

We de�ned the query feature vector of user u: QVu. The
feature vector comprises the weights as elements.

In this paper, we de�ne the similarity of user u and v as
sim(u, v), by the cosine degree, as

sim(u, v) =
QVu ·QVv

|QVu||QVv| .

Attackers set a threshold θ and assess a user pair that has a
similarity that is greater than the threshold as related users.

Figure 1: Sketch of query conversion.

3. QUERY CONVERSION
We start by introducing a sketch of our approach before
describing intimate algorithms related to query conversion.
Figure 1 depicts the basic �ow. As an example, we con-
sider a schedule management application. On the applica-
tion, we attempt to convert the following query: date =
�Nov. 15, 2008�.

We use a trusted intermediate server for this purpose and
it works according to the following process. It �rst converts
the literal �Nov. 15, 2008� into a binary string. Where hash
is a hashing function and binary is a function that converts
the input string into a binary string, this step is described
as

binary(hash(�Nov. 15, 2008�)) = “0110”.

Then, the conversion server translates the binary string us-
ing conversion tree. That is a binary tree; it maps each
binary string to the leaf. The leaf is a binary string that is
mapped is decided from comparing the string to the label
that each edge has. For example, we consider the conversion
tree shown in Fig. 1 and convert binary string “0110”. We
start from the root node (number 1). The �rst character
of the target string is �0�. Therefore, we choose the upper
edge labeled �0� and go to node number 2. Because the sec-
ond character is �1�, we choose the lower edge and go to the
leaf B. Therefore, we decide the leaf mapped by each binary
string. After deciding, we concatenate labels of edges from
the root to the selected leaf. In this example, the connected
label is “01”. Next, we check the length of the connected
label. The wild-card character �*� is appended to the con-
nected label if the length is shorter than the original binary
string. Consequently, the index literal �Nov. 15, 2008� is
converted to “01 ∗ ”. This literal “01 ∗ ” means to require
items started with �01�, so that we can bind up many queries
such as those starting with �01�. Therefore, attackers cannot
distinguish what the users really want. The query sent to
the server, therefore, is

match(binary(hash(date)), “01 ∗ ”),

where match is the function comparing a binary string and
converted strings. The server can use these functions.

Query conversion converts di�erent queries into the same
new query. For that reason, the result of converted queries
might have many irrelevant items. Therefore, the interme-
diate server execute an original query to results so that un-
necessary items are removed, and users and applications can
obtain items as desired.



Figure 2: Query conversion tree.

Algorithm 1 convert(Tree, user, literal)

path ⇐ nil, node ⇐ root of Tree
increment Count(user, literal) of Tree
update(Tree)
while node is not leaf node do
for each child of node do

e ⇐ label of node to child
if literal[depth of child] = e then

path ⇐ path + e, node ⇐ child
break for-loop

end if
end for

end while
if length(literal) 6= length(path) then

path ⇐ path + “ ∗ ”
end if
return path

In the rest of this chapter, we �rstly de�ne the conversion
tree and then we explain our algorithm of the conversion.

3.1 Structure of Conversion Tree
Our conversion tree T is based on extensible hash and Fig.
2 presents a sample of it. We formally de�ne it as

T (root, V, L,Counter).

Therein, V is a set of nodes and root ∈ V is the root node of
tree T . Our tree has nodes of two kinds: inner nodes and leaf
nodes. The inner node (shown as a circle in Fig. 2) has a set
of child nodes. The leaf node (shown as a box in Fig. 2) has
a set of literals mapped to the leaf node. Edges connecting a
node to another node have a label, where L is a set of literals
converted this tree and Counter is a counter that counts the
requests of every user. We use numbers recorded by the
counter as a function. Therefore, let Count(u, l) represent
the number of users u ∈ U who request literal l ∈ L.

3.2 Query Conversion Algorithm
When the conversion server receives a query: attr = l, it
translates the literal l in the query into the binary string b:
b = binary(hash(l)), where hash is a hashing function and
binary is a function converting an input to the binary string.
The conversion server processes the binary string by steps
shown in Algorithm 1. First, the counter of a requesting
user u and the literal l (Counter(u, l)) is incremented by one,
and the conversion tree is updated. This updating process is
explained in the next chapter. Then, a leaf node mapped by
the binary string b is computed by pursuing the conversion
tree. After deciding the mapped leaf, labels set in the edges
from the root node to the leaf node are connected. A wild-
card character �*� is appended to the connected labels if the
length of the connected labels does not equal the length of

Figure 3: Restricting query conversion tree.

the binary string. Finally, we obtain the connected labels
as a converted string b′. The request sent to the server uses
functions binary, hash, and match; it is written as follows

match(binary(hash(attr)), b′).

If a user's request has more than two literals, for example re-
questing from a date and a place, we use as many conversion
trees as the literals contained in the request.

3.3 Update of Conversion Tree
Our proposed approach binds some queries and converts an-
other query. Consequently, we prevent attackers from infer-
ring the social information from observed query logs. How-
ever, binding some queries causes users to obtain items they
did not ask for, which means that the cost increases. We re-
strict the conversion tree dynamically to keep the cost under
a given maximum cost.

The conversion tree is updated when a user converts a query.
We imagine that a user sends a query and that the query is
mapped to a leaf node n; and we let the depth of node n be
d. In this condition, the literals Ls in the leaf node n are
�rst divided into two subsets Ls0 and Ls1, literals for which
the d-th character is 0 and 1 respectively belong to Ls0 and
Ls1. Then, Ls0 and Ls1 are examined as to whether they
should be divided or not. The tree removes the leaf nodes n
and adds two leaf nodes n0 and n1, which respectively have
the set of literals Ls0 and Ls1 if the subsets are divided by
the judgment. Figure 3 portrays this update process. The
old leaf node n containing the set of literals Ls is changed
to an inner node to connect new leaf nodes; also, new leaf
nodes n0 and n1 are added and connected to the inner node.
The new edges from the inner node to n0 and n1 respectively
bear labels 0 and 1.

Determination of the divide is done according to the follow-
ing steps considering costs. The costs cost0 and cost1 are
�rst calculated, respectively, for the subsets Ls0 and Ls1:

costi =
X
u∈U

P
l∈Lsi

Count(u, l)×Nl

totalu
(i = 0, 1).

The leaf node n are divided into the two leaf nodes n0 and n1

if at least one of the costs cost0 and cost1 are bigger than
a given max allowable cost c. The following conditions are
computed for each subset if the costs are less than the c.

X

l∈Lsi

˛̨
˛̨Count(u, l)

totalu
− Count(v, l)

totalv

˛̨
˛̨ < k (∀u, v ∈ U, i = 0, 1)

When the condition presented above is true for L0 and L1,
then the leaf nodes n are divided into the two leaf nodes
n0 and n1. The condition means a summation for every
literal of a di�erence of rates for how many users u and v
sent a literal l. That it is so small is an expression of a



di�erence of rates; the number of users u and v who sent
literals mapped in the nodes n0 and n1 is small, which is a
di�erent tendency from that by which requests observed by
attackers are small. Consequently, nodes are divided if the
intractability of analyzing similarity can remain high, even
if the cost is not great.

For this determination, a conversion server must record the
number of items Nl matching a request l. The server there-
fore must examine insert and delete events for the databases.

4. EVALUATION EXPERIMENT
4.1 Dataset used for Experiments
We have an experiment to evaluate our proposal. For this
experiment, we need a dataset that has users belonging
to some groups and queries by the users to DaaS. Unfor-
tunately, such public datasets are apparently unavailable.
Therefore we choose an open dataset which is used by Alexan-
der et al. for evaluating query processing on a P2P net-
work [6]. This dataset is based on the OpenDirectory [7].
OpenDirectory is a project for classifying web sites; it has
hierarchical categories. Each category has more segmental-
ized categories and web sites which are categorized in the
category. Each web site might belong to more than two cat-
egories. Meaning that the editor of a web site belongs to
some category group. In our experiment, we use web sites
in OpenDirectory as users and categories as groups as same
as the experiment by Alexander et al. That is the dataset
is re�ect a real community: people might belong to some
interest group.

In this experiment, we use categories for which the depth is
less than �ve and use web sites belonging to the categories.
Then we create 100,000 queries on the users and groups.
Our con�guration is that each user must request web sites
belonging to a group similarly to a user who would use the
web site. The number of queries depends on the Zipf distri-
bution, which is often used in studies of social networks [9].
We calculate the similarity over the converted queries for
the dataset; the dataset has 133,602 users and 6,280 groups.

4.2 Result
Next, we explain the results. We use the precision and recall
for measurement of success of attacks. The lower precision
and recall therefore indicate higher safety. The x-axes of cost
graphs show cost; the y-axes show the numbers of users.
They therefore express that 100 users have 5 cost points
if a point stands for (5, 100). The cost value of user u is
computed using the following formula;

costu =

P
l∈L Log(u, l)×Nl

toralu
,

where Nl be the number of items received from the server
as a result of a request literal l. That is the formulation
expresses an average of the number of items user u receive
from the server.

Fig. 4 portrays the capability of our attack model, which is
the precision and recall for unconverted queries. Attackers
decide that users belong to the same group if the similar-
ity is greater than threshold θ. Consequently, our attack
method indicates high precision for any threshold. On the
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Figure 4: Result of similarity from the feature vectors.
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Figure 5: Reception cost of data for each users.

other hand, recall is about 0.5, indicating the need for some
improvement.

Fig. 5 and 6 depicts the result about our approach. Fig.
5 shows the distribution of the costs; each user can execute
queries under the maximum admissible cost for all cases.
The value c in the graphs of Fig. 6 is the maximum ad-
missible cost described in section 3.3. Speaking from the
graphs, the condition c = 50, k = 1.0 conducts the safest
result. Each user in this case downloads, at most, 50 items
a query; the average of the precisions is less than 0.6. The
average of the recalls in this case is about 0.5.

5. CONCLUSION AND FUTURE WORK
As described herein, we introduce a new privacy problem�
security of social information� to produce safer DaaS than
that which services already provide. Social information is
information about relation between users: it di�ers from
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Figure 6: Result of similarity using query conversion.

personal information because personal information is infor-
mation identifying individual users. Therefore, it has been
treated as unimportant. Nevertheless, many methods of an-
alyzing social networks are studied so that the relation in-
formation can present risk. We believe that discussing social
information is important to retain privacy.

Based on these situations, we introduce an attack method of
exposing social information from analyzing queries. We pro-
pose a method to defend the attack by rewriting the queries.
Our proposal has two parameters related to safety and cost;
users can choose them according to their demand. More-
over, we evaluate our proposal using an experiment based
on real information: an open directory. Based on the result,
a speci�c pair of parameters yields high security and low
overhead. However, our method must incur large costs de-
pending on circumstances: more improvement is necessary.

We envision our future work as improvement of the at-
tack method and query conversion to protect privacy from
stronger attacks.
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