
A Conceptual Framework for Specification, Analysis, and
Design of Anonymity Services

Marzieh Ispareh
Department of Computer Engineering

University of Isfahan, Iran

ispareh@eng.ui.ac.ir

Behrouz Tork Ladani
Department of Computer Engineering

University of Isfahan, Iran
ladani@eng.ui.ac.ir

ABSTRACT
Anonymity is an important issue in information security, which
its main goal is to protect entities privacy in the systems.
Different methods and protocols (with different types of
anonymity services) have been developed so far to provide
special anonymity requirements of applications. Each of these
systems has been developed with different ad hoc approaches. In
this paper we present a conceptual framework that makes
specification, analysis and design of anonymity applications
more systematic. To do this, first we go toward presenting a
conceptual model of anonymity which can be used in clear
description of different aspects of anonymity. Then we extract a
list of anonymity primitives from the existing anonymity
providing methods. These primitives are base functions which
can be composed to form anonymity services to provide
specified anonymity requirements of the system.

Keywords
Security, Anonymity, Anonymity Services, Anonymity
Requirements, Conceptual Model.

1. INTRODUCTION
Anonymity is an important issue in information security context
which ignoring it in some applications leads to entities privacy
violation. Some applications that require anonymity can be
categorized as follows [1, 2]:

� Anonymous search of information

� Protecting communication patterns of entities to prevent
traffic analysis.

� E-voting

� Providing freedom of speech in fanatic environments

� Anonymous use of location- based services

� E-payment

� Sending and receiving messages anonymously

It can be deduced from the above list that different applications
require different types of anonymity. For example the
anonymity requirements of an e-voting system are different from
the requirements of an anonymous search application. Different
methods and protocols have been developed so far to provide
special anonymity requirements of applications [3, 4, 5, 6, 7, 8],
but each of these systems has been developed with different and
ad hoc approaches. The goal of this paper is to present a
conceptual framework that makes specification, analysis and
design of anonymity applications more systematic.

Like any software system, the first step in anonymity system
development is analysis and specification of anonymity
requirements. To do this step, we need a descriptive model of
anonymity concepts but there is no complete framework for
comprehensible description and classification of concepts and
requirements of anonymity yet. So first we go toward presenting
a conceptual model of anonymity which can be used in clear
description of different aspects of anonymity.

After requirement analysis and specification, the next step is to
define anonymity services to provide these requirements. Most
of the existing anonymity methods and protocols use a
combination of some reusable primitive anonymity techniques.
We derivate and present these anonymity primitives by
investigating the existing anonymity methods. These primitives
are base functions for providing anonymity and can be
composed to form anonymity services to provide specified
anonymity requirements of the applications.

We first study and classify architectures used in different
anonymity methods and present a layered architecture for
providing anonymity in an application. Using this architecture,
application layer implementation can be separated from
anonymity provider layer.

As we studied there is no work yet to present a complete
classification and comprehensive model of anonymity concepts.

In [9] anonymity is classified into two categories: Data
anonymity and Connection anonymity. Data anonymity is about
filtering any identifying information out of the data that is
exchanged in a particular application. Connection anonymity, on
the other hand, is about hiding the identities of source and
destination during the actual data transfer.

Freedman in [10] presents an elementary taxonomy of
anonymity services, but this categorization is just based on
which entities become anonymous in communication process.

In [11], another taxonomy of anonymity properties is presented.
Although this classification is more complete than [4], but it has
not covered different roles of entities which are someway
participant in anonymity process.

In [12] three scenarios are presented for anonymity in e-
commerce:

� Only one communication party wants to be anonymous.

� Both of parties want to be anonymous.

� Two parties are known to each other but want to be
anonymous to the others.

As can be seen, this taxonomy is only based on “What entity
wants to be anonymous and toward which entities”.

The paper is structured as follows: First a layered architecture
for anonymity provider is presented in section 2. Then in section
3 we present a conceptual model of anonymity which can be
used in clear description of different aspects of anonymity. We
show the usage of model by analysis and specification of
requirements of two sample anonymity applications and
sketching the properties of two anonymity protocols. In section
4 we try to derive a list of anonymity primitives as complement
to the presented model. The application of primitives as reusable
modules of two anonymity method is also shown as case study
in this section. Finally section 5 concludes the paper.

2. A LAYERED ARCHITECTURE FOR
ANONYMITY SERVICES
Different protocols and mechanisms are developed so far to
provide anonymity requirements. We can divide them into the
following three categories based on layers they are applied:

1. Communication layer methods:
Some of the required anonymity properties are related to the
communication and are application independent. So most of
protocols in this category are general-purpose protocols and
their goal is to provide anonymity in communication layer
independent of application logic. Some examples of these
methods are Mix Net [13], Crowd [14] , Onion routing, [15],
Dining Cryptography [16], and P5 [17].

2. Application layer methods:
These methods are normally special-purpose and provide special
requirements of applications using top-level anonymity
techniques. An important assumption in these methods is that we
have anonymous communication in lower layers. So all attempt
in this layer is to provide just special anonymity requirements of
application. Applying these methods in a system without
anonymous communication is useless. Examples of these
methods are Joris Claessens’s work [18] for E -Payment and
Giuseppe Ateniese’s work [19] for E-Prescriptions.

3. Composed methods
These methods need to modify anonymity protocols in
communication layer to provide anonymity requirements of the
application layer. In other words in these methods, general-
purpose anonymous communication methods are customized to
provide special anonymity requirements of an application in
combination with anonymity requirements of communication
layer. Theses methods are normally ad hoc methods which are
inserted into the application code and are not reusable in similar
cases. Examples of these methods are Net Cash [6] and Mix-
based Electronic Payments [7].

We can consider the architecture of an anonymity provider as
Fig. 1. Dashed area shows anonymity provider system and upper
layer provides only application requirements without
considering anonymity requirements.

Figure 1. Anonymity provider architecture

3. A CONCEPTUAL MODEL OF
ANONYMITY
In this section, we try to present a conceptual model of
anonymity based on the existing anonymity requirements and
services in different applications and protocols. To achieve this
goal, first we introduce the key concept “identification
information” which we use it to clearly define the anonymity
concepts. Then we describe our model components and we
summarized the model. Finally in last part of this section, we
apply our model on four operational cases including two
applications and two anonymity protocols.

3.1 Identification information
Anonymity is usually translated to “without name” or
“nameless”, however we think that it is more general than only
“without name” conceptually. We introduce “Identification
Information” or Idinfo in short that is more general than “name”.
After defining Idinfo and its instances, we can define anonymity
concepts.

Definition 1 (Idinfo). Idinfo is data or information that can be
used to indicate the real identity of an entity or her messages
precisely. Idinfo may belong to one entity or a group of entities.

Note that in most cases the identity of messages of an entity is
the same identity of the entity herself.

Based on the above definition, different instances of Idinfo in a
system are Entity Idinfo and Message Idinfo.

3.1.1 Entity Idinfo
Entity Idinfo instances falls into the following categories:

� Name Idinfo: this type of Idinfo is a contractual pattern for
identifying an entity in the system. An entity in an
organization can have different name Idinfos. We classify
name Idinfos into two types: “Personal Name Idinfo” and
“Organizational Name Idinfo”. The latter is in fact the role
of entity in organization.

� Operation Idinfo: Sometimes, an entity can be truly
identified based on her operations. Regarding this,
operation Idinfos can be divided into two types: “Operator
Idinfo” and “Operation Coherency Idinfo”. The former is
such information that from it we can identify the operator
uniquely, and the later is information that lets us identify a

Application

Application

Anonymity Service

Communication

Anonymity Service

Communication Network

source by finding out the relation between
operations.

� Property Idinfo: data or information about
is not directly includes the entity’s identification
information, but joining them to other information
inferring from them, helps us to identify
this information is the entity’s own property
“Inherent Property Idinfo”, but if it is indirectly related to
the entity, it is called "Adventitious P
Anonymity concept is mainly about handling
Idinfo [8].

Entity Idinfo categories are summarized in Fig.

Figure 2. Entity Idinfo types

3.1.2 Message Idinfo
Message Idinfo instances falls into the following

� Channel Idinfo: Sometimes messages of
truly identified by studying the properties of the
communication channel between entities. We call these
properties channel Idinfos. Some of these
help us trace the communication are message
content, delay between sending and receiving
order of messages, route of messages, etc

� Connected Entities Idinfo: This kind of
about the message sender and receiver entities which
studied in previous section. So they have entity Idinfo
properties.

Message Idinfo categories are summarized in

3.2 Conceptual model components
As mentioned earlier, our conceptual model of anonymity has
three components including anonymity types, anonymity
structure and anonymity constraints. In this section
them in details.

�����������	

��������	

�������
������	

��
����������	

between its separate

about an entity which
the entity’s identification

other information or
dentify the entity itself. If

property, we call it
, but if it is indirectly related to

"Adventitious Property Idinfo”. K-
handling this kind of

Fig. 2.

Idinfo types

following categories:

messages of an entity are
the properties of the

between entities. We call these
s. Some of these Idinfos that can

message size, message
and receiving messages,

etc.

This kind of Idinfo is in fact
about the message sender and receiver entities which were

So they have entity Idinfo

in Fig. 3.

Conceptual model components
earlier, our conceptual model of anonymity has

including anonymity types, anonymity
. In this section we explain

Figure 3. Message Idinfo types

3.2.1 Types of anonymity
We can make entities anonymous by preventing access to their
identification information. So we define anonymity service
based on the Idinfo concept previously defined as follows:

Definition 2 (Anonymity service
set of activities which provide a valid combination of
inaccessibility to some Idinfos
other entities.

So we can have two classes of
anonymity services, and message anonymity service.

� Entity anonymity: We divide
services into seven different
table 1. Considering the table
entity are reachable, we have no anonymity. In contrast,
when none of Idinfos of an entity is reachable, we have full
anonymity.

� Message anonymity: We divide this class of anonymity
services into seven types presented in table
anonymity, when all of the message Idinfos are reachable,
we have no anonymity.

Table 1. Types of entity
Anonymity
service type

Name
Idinfo

Without
anonymity

��

EA1 ��

EA2 ��

EA3 ��

EA4 �

EA5 �

EA6 �

EA7
(Full anonymity)

�

�: Access to Idinfo, �: No access to Idinfo

����
��������
����	

����������
����
��������	

������
������	

�������
��
�
������������	

���������
��
����������	

���������
���
��
����������	

��������
����	

������������	

�
��������
�������������	

. Message Idinfo types

of anonymity
We can make entities anonymous by preventing access to their
identification information. So we define anonymity service
based on the Idinfo concept previously defined as follows:

service). Each anonymity service is a
es which provide a valid combination of

inaccessibility to some Idinfos instances from the viewpoint of

classes of anonymity service: entity
, and message anonymity service.

: We divide this class of anonymity
different anonymity types shown in

Considering the table, when all of Idinfos of an
entity are reachable, we have no anonymity. In contrast,
when none of Idinfos of an entity is reachable, we have full

: We divide this class of anonymity
types presented in table 2. Like entity

anonymity, when all of the message Idinfos are reachable,

. Types of entity anonymity service
Name
Idinfo

Property
Idinfo

Operation
Idinfo

�� �� ��

�� �� �

�� � ��

�� � �

� �� ��

� �� �

� � ��

� � �

: No access to Idinfo

������������	

������������

��������
�
�����

�����

��������
�����

��������

���

�
��������
�������������	

��������������
����	

 ��������
�����������	

Table 2. Types of message anonymity service

Anonymity
service types

Connected entities Idinfos

Channel
IdinfoSender Entity

Idinfo
Receiver

Entity Idinfo

Without
anonymity

�� �� ��

MA1 �� � ��

MA2 � �� ��

MA3 � � ��

MA4 �� �� �

MA5 �� � �

MA6 � �� �

MA7
(Full anonymity)

� � �

�: Access to Idinfo, �: No access to Idinfo

Note that we can increase the granularity of Idinfos to make
more valid and detailed combinations in both cases of entity and
message anonymity.

3.2.2 Structure of anonymity
Each anonymity application needs a combination of one or more
anonymity service types based on its requirements and most of
applications need more than one anonymity service type.

As we told earlier in definition 1, an anonymity service is a set
of activities that provide one kind of anonymity for an entity
from the viewpoint of other entities.

Thus two other main factors should be considered in such a
service:

� Anonymous entity: this entity has one of the following
roles: Sender, Receiver, or entity which its information is
accessible.

� Anonymity observer entity: the entity that an anonymous
entity makes herself anonymous for him. This entity may
have one of the following roles: Sender, Receiver, Local
observer, Global observer, Members of anonymity provider
system, or Users who have access to entities information.

Another noticeable issue is sender’s abilities. When the sender
of information needs to be anonymous, it can have the following
abilities based on application requirements:

1- Authentication:

Though it is impossible to identify sender of messages,
anonymous sender authentication is feasible.
2- Reply:

Though it is impossible to identify sender of messages, reply
to anonymous sender is feasible.

3.2.3 Anonymity constraints
Each anonymity service can be applied absolutely or
conditionally. In the case of Absolute anonymity, entity
becomes anonymous without any condition. On the other hand,

in Conditional anonymity, the entity becomes anonymous
condition to satisfying some constraints. Three kinds of
anonymity constraints could be defined:

� Temporal anonymity constraints: Anonymity is
established or preserved based on some temporal
conditions e.g. until when some special event is happen.

� Spatial anonymity constraints: Anonymity is established
or preserved based on some spatial conditions e.g. an agent
is anonymous else in hosts with a special (authenticated) ID
or IP address.

� Committed anonymity constraints: Anonymity is
established or preserved so long as entity is faithful to some
special rules e.g. while she does not received a special
secret token or is obeyed to a certain rule.

3.3 Summary of the model
Our conceptual model of anonymity has three components:

� Types of anonymity

First step in specification of anonymity requirements in
applications and protocols is to specify the required
anonymity service types.

� Structure of anonymity

Second step is to specify factors involved in each required
service.

� Anonymity constraints

In final step, we specify whether each anonymity service
is conditional or not, and what are those constraints if
there is any.

So we can specify the anonymity requirement or properties as a
tuple <EA, MA> where EA is the set of Entity Anonymity
services that each of its members is a tuple as follows:
<AE, AO, Atype, C Authenticable, Repliable>AE is the
Anonymous Entity, AO is the Anonymity Observer entity,
AType is type of this anonymity service, C is a set of
constraints; if it is empty, then the anonymity service is applied
absolutely, and Authenticable and Repliable are Boolean
parameters that indicate whether entity anonymity has these
abilities or not.
MA defines the set of Message Anonymity services that each of
its members is a tuple as follows:
<SE, RE, AO, Atype, C >
In which SE and RE are communicated entities and other
parameters are the same as EA.

3.4 Case study
In this section we use our model to study some real cases
including two anonymity protocols and two anonymity
applications. As we told earlier in section 3.2, we did not
increase the granularity of Idinfos to make detailed
combinations of anonymity types. So although in some cases we
achieve same anonymity type for two anonymity services, if
details are considered, these services may have different
anonymity types.

3.4.1 Mix net protocol
A number of anonymity protocols like Webmixes [20], ISDN-
Mixes [21], the Java Anon Proxy [22], Stop-and- Go-Mixes [23]
and others have been based on David Chaum's anonymous email
solution called mix net [24].

In this protocol, each mix has a public key which senders use to
encrypt messages to that mix. The mix accumulates a batch of
these encrypted messages, decrypts them, and delivers them to
next receiver. Because a decrypted output message looks
nothing like the original encrypted input message, and because
the mix collects a batch of messages and then sends out the
decrypted messages in a rearranged order, an observer cannot
learn which incoming message corresponds to which outgoing
message.

This protocol uses methods like batch sending, dummy message,
adding random delay and so on to protect from traffic analyzing.

It provides the following kinds of anonymities:
- Anonymity of communication between sender and receiver

from:
� Global observer

� Local observer

These two kinds of anonymities are of type MA7. In addition,
these anonymities are applied absolutely.
- Anonymity of sender from receiver:
If content of message has no sender identity, this anonymity is

of type EA7, otherwise anonymity is of type EA5. This
anonymity is applied absolutely too.
Regarding this analysis, we can specify the anonymity of this
protocol as tuple <EA, MA> in which EA is as follows:
EA = {<Sender, Receiver, EA5, null, False, False >}
MA is also as follows:
MA = {< Sender, Receiver, global observer, MA7, null >,

< Sender, Receiver, local observer, MA7, null >}
There are some versions of this protocol which in the
anonymous seder is repliable. So in these versions EA is as
follows:
EA = {<Sender, Receiver, EA5, null, False, True >}

3.4.2 Onion routing protocol
In onion routing protocol presented by Reed ،Syverson and
Goldschlag [9], sender and receiver know each other. Goal of
this protocol is protecting relation of sender and receiver from
others and preventing from traffic analyzing. In other words it
makes a private channel in a public network.

This protocol uses layered cryptography as mix net but unlike
mix net, the route from sender to receiver is established in the
beginning of communication. Then this route is sent as a layered
encrypted message to routers so that each router saves the
address of next and previous router. After establishing the route,
message is sent layered and encrypted to routers. So these
messages are untraceable.

We specify anonymity of this protocol as tuple <EA, MA> in
which MA is as follows:

MA = {< Sender, Receiver, global observer, MA7, null >,
< Sender, Receiver, local observer, MA7, null >,
< Sender, Receiver, helper routers, MA7, null >}

Assuming lack of any identification information in messages,
EA is specified as follows:

EA = {<Sender, Receiver, EA6, null , False, False >}

3.4.3 Email Service
Suppose we need an email service which is used to present
medical consolation to patients by preserving their privacy.
Requirements of this service are as follows:

� Patient must be anonymous from every one

� Anonymity of patient must be continuous.

� Messages of patient must be untraceable.

� Because of important role of patient’s medical background
in consolation, it must be possible to understand the
relation between messages from the same patient.

� Doctors can reply to anonymous patients.

Based on the above requirements, we specify this service as
tuple <EA, CA> that MA is an empty set and EA is as follows:

EA = {<Patient, Doctor, EA4, null, False, True >,

<Patient, global observer, EA7, null, False, False >,

<Patient, local observer, EA7, null, False, False >}

3.4.4 E-Payment Service
Suppose we need a payment service such that buyers want to be
anonymous. Much as we use cryptographic protocols,
behavioral pattern of buyer, her/his preferences, and so on
remains clear.

Unlike email service, in this service, anonymity can not be
absolute to prevent from fraud. So if buyers disobey from
payment rules, he/she must be traceable. Also in this service
buyer can be authenticated.

Based on above requirements, we illustrate this service as tuple
<EA, CA> that MA is an empty set and EA is as follows:

EA = {<Buyer, Seller, EA7, {Paid on time}, True, True>,

< Buyer, global observer, EA7, null >,

< Buyer, local observer, EA7, null >}

4. ANONYMITY PRIMITIVES
Anonymity services have similar functionalities especially in
communication layer. By extracting these reusable
functionalities, we achieve anonymity primitives.

Some advantage of using anonymity primitives are as follows:

� They are reusable in different applications.

� They can be composed to achieve more anonymity
functionalities.

� Using them, we can separate application layer development
from anonymity provider layer development.

We divide anonymity primitives to the following classes based
on layers they are going to be applied:

� anonymity primitives in communication layer

� anonymity primitives in application layer

� anonymity primitives usable in both layer

Anonymity primitives in application layer are generally
complex. They are complete solutions which can provide the
required anonymity in application without composing with other
anonymity techniques.

Anonymity primitives in communication layer are generally
simple and must be composed with each other to make a
complete solution to provide the required anonymity.

In next section we describe various techniques of three
mentioned classes. Then in last part of this section, we analyze
two anonymity protocols based on these techniques.

4.1 Communication layer primitives

1- Padding

Members of anonymizer in route of sender to receiver
prevent from traffic analysis based on size of messages by
modifying messages size.

2- Dummy messages

Members of anonymizer prevent from tracing real message
between entities by inserting dummy messages to their
outputs.

3- Reordering messages

Members of anonymizer prevent from traffic analysis
based on order of messages by reordering messages before
sending them to their outputs.

4- Batching

Members of anonymizer cause different delay in sending
messages by batch sending of messages. So they prevent
from traffic analysis based on order and delay of messages.

5- Adding random delay

Members of anonymizer wait some moment randomly
before sending input messages to their output. So they
prevents from traffic analysis based on order and delay of
messages.

6- Dining Cryptography

Every entity in network shares a 1-bit key with next
neighbor entity. To send a message, all entities send sum
of bits they share. If some one wants to transfer real
message, he/she sends reverse of sum. If no one send real
message, result is zero else there is a message from an
anonymous sender. To send message greater that 1-bit,
each pair share chain of bits.

Using this technique, network entities can send their
massages anonymously.

7- Broadcasting

To send a message to anonymous sender, message can be
send to all member of the group. Structure of message
must be in such a format which only real receiver can read
it.

8- caching

Members of anonymizer system cache replies of receivers
to requests. Every time a member receives a request
similar to its cached requests, send corresponding response
without forwarding request to its receiver. So tracing
messages becomes harder.

9- Filtering

Members of anonymizer filter messages that include
identification or other properties of anonymous entity. So
this technique prevents from flaw of identity information.

10- Multiplexing

Members of anonymizer system send several messages as
one message so traffic analysis becomes harder.

4.2 Common primitives

1- Encryption

By encrypting/decrypting input messages before sending
them to output, correspondences between input and output
messages in members of anonymizer is covered.

2- Compressing

By compressing/decompressing input messages before
sending them to output, correspondences between input
and output messages in members of anonymizer is
covered.

3- Impersonation

By replacing real identity of entities with unreal identity,
we can conserve identity information of them.

4- Pseudonymous
Using pseudonyms as entities identity, we can conserve
identity information of them.

5- Secret sharing[25]
The goal of this technique is to prove authorization of an
entity for using a service without flaw of its identity
information. In this technique an authorized entity (such as
system manager) use share key schema and divides secret
authentication message to N parts. Server has t-1 parts and
other parts are divided between entities who want get
service from server. Threshold for secret message retrieval
is t that means when an entity sends a request to server, if
it has part t of secret, entity is authorized. Yet it remains
anonymous because server doesn’t know which part of n-t-
1 parts has been received.

4.3 Application layer primitives

1- Generalization
In this technique values of some properties in database of
entities information are replaced with more general values

in such a way that statistical information remains valid.
For example by replacing zip code with street in the
database, achieving entities identity from their
information becomes harder.

2- Tuple suppression
K-anonymity method is a combination of Generalization
technique and Tuple suppression technique. In Tuple
suppression technique some of records in database are
deleted to decrease generalization degree needed to
anonymize entities.

3- Blind signature[26]
Through this technique, an entity can get sign of other
entity on its message without flaw of any information
about content of its message. This technique can be used
in applications which we need authorization in addition to
anonymity.

4- Fair blind signature
In blind signature technique there is no relation between
original readable message and corresponding unreadable
message. Applications that need controllable and
conditional anonymity must have a way to link between
two messages whenever they need. Fair blind signature
technique provides this ability through trusted third party.

5- Partially blind signature[27]
Using this technique, an entity can get sign of other entity
on its message without flaw of information about content
of message. Difference between this technique and blind
signature technique is that in this technique some content
of message is readable for signer.

6- Group signature
In this technique, the signer of message remains
anonymous. This technique helps members of a group to
sign a message anonymously. Sign verifier can not
indicate what member of group signed the message.

7- Zero knowledge proof[28]
This technique helps an entity to prove to another entity
that it is aware of a secret without flaw of information
about that secret. It can be used to provide authorization in
addition to anonymity.

4.4 Case studies
In this section we decompose two anonymity protocols into their
anonymity primitives which were presented in previous sections.
Components of each protocol presented as Flowchart. In these
Flowcharts, gray boxes are anonymity primitive blocks.

4.4.1 Mix net protocol
An abstract of operation of this protocol was presented in
previous sections. Building blocks of this protocol are as Fig. 4.

Figure 4. Mix net protocol flowchart

4.4.2 Crowd protocol
In crowd [14], presented by Reiter and Rubin, each user must be
member of Crowd. Requests of users to a web server pass from
random number of Crowd members to server.
Each member which wants to send message to web server, select
a member randomly, encrypt message by their share key and
send message to that member. After receiving a message,
anonymizer member decrypts it, select another member or web
server randomly, encrypt message by their share key and send
message to selected member.
Flowchart of this protocol is as Fig. 5.

Figure 5. Crowd protocol flowchart

5. CONCLUSION
Although different methods and protocols have been developed
so far to provide anonymity, each of them has been developed
by different ad hoc approaches. In this paper we presented a
conceptual framework that makes designing and developing
anonymity applications more systematic. To do this, we first
presented a conceptual model of anonymity which can be used
in clear description of anonymity requirements of applications.
Then we extracted anonymity primitives from existing
anonymity providing methods. These primitives can be
composed to form anonymity services which provide specified
anonymity requirements of the system. We are trying to bind the
conceptual model to anonymity primitives. This way, using
these primitives in addition to the conceptual model and the
layered anonymity provider architecture, we can establish an
anonymity application development methodology which is our
next goal.

6. REFERENCES
[1] Qing Zhang, A fair and anonymous schema , PhD thesis ,

university of London, 2007.
[2] Dahlia Malkhi , Anonymity-Advanced Course in Computer

and Network Security, The Hebrew University, Jerusalem,
2002.

[3] Goldreich, O.,Micali, S. , Wigderson, A , Proofs that yield
nothing but their validity , ACM,1991.

[4] S´ebastien Canard , Aline Gouget , Divisible E-Cash
Systems Can Be Truly Anonymous , International
Association for Cryptology Research 2007

[5] Joris Claessens , Bart Preneel†, Joos Vandewalle ,
ANONYMITY CONTROLLED ELECTRONIC
PAYMENT SYSTEMS , 20th Symposium on Information
Theory IEEE, 1999.

[6] G. Medvinsky, B. C. Neuman. NetCash: A design for
practical electronic currency on the Internet. In ACM-
CCS’93, 1993.

[7] M. Jakobsson, D. M’Ra¨ıhi, Mix-based Electronic
Payments. Fifth Annual Workshop on Selected Areas in
Cryptography (SAC’98), Queen’s University, Kingston,
Ontario,Canada, August 1998.

[8] Kristen LeFevre, David J. DeWitt, Raghu Ramakrishnan,
Incognito: Efficient Full Domain K-Anonymity, University
of Wisconsin Madison Madison, WI 53706.

[9] H Tillwick and MS Olivier, Bridging the gap between
anonymous e-mail and anonymous Web browsing, Online
Information Review, 32, 1, 22-34, 2008.

[10] M. Freedman, Design and Analysis of an Anonymous
Communications Channel for the Free Haven Project, BS
Thesis, MIT, 2000.

[11] IWT, APES: Anonymity and Privacy in Electronic
Services, Requirement study of different applications,
Deliverable 2, 2001.

[12] George Danezis, Better Anonymous Communications,
Ph.D. Thesis, University of Cambridge, January 2004.

[13] D. Chaum. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Communications of the ACM,
24(2):84{ 88, February 1981.

[14] M. K. Reiter and A. D. Rubin., Crowds: Anonymity for
Web Transactions. ACM Transactions on Information and
System Security, 1(1):66-92, November 1998.

[15] M. Reed, P. Syverson, and D. Goldschlag, Anonymous
Connections and Onion Routing, IEEE Journal on Selected
Areas in Communication Special Issue on Copyright and
Privacy Protection, 1998.

[16] D. Chaum., The Dining Cryptographers Problem:
Unconditional Sender and Recipient untraceability, Journal
of Cryptography, 1(1):65- 75, 1988.

[17] R. Sherwood, B. Bhattacharjee, and A. Srinivasan.,P5: A
Protocol for Scalable Anonymous Communication, In Proc.
2002 IEEE Symposium on Security and Privacy, May
2002.

[18] Joris Claessens, Bart Preneel, Joos Vandewalle, anonymity
controlled electronic payment systems, 20th Symposium on
Information Theory in the Benelux Haasrode, Belgium,
May 27-28, 1999.

[19] Giuseppe Ateniese , Breno de Medeiros, Anonymous
E-Prescriptions , ACM , 2002.

[20] O. Berthold, H. Federrath, and M. Kohntopp. Project
anonymity and unobservability in the internet. In
Computers Freedom and Privacy Conference 2000 (CFP
2000) Workshop on Freedom and Privacy by De-sign,
April 2000.

[21] A. P_tzmann, B. P_tzmann, and M. Waidner. Isdnmixes:
Untraceable communication with very small bandwidth
overhead. In GI/ITG Conference: Communication in
Distributed Systems, February 1991.

[22] H. Federrath. Jap: A tool for privacy in the internet.
http://anon.inf.tu-dresden.de/index en.html.

[23] D. Kesdogan, J. Egner, and R. Buschkes. Stop-and-go-
mixes providing probablilistic anonymity in an open
system. In Information Hiding, April 1998.

[24] Aneta Zwierko1 and Zbigniew Kotulski, Mobile agents:
preserving privacy and anonymity, IMTCI2004, Warsaw
2004.

[25] Chaum, D. L. Blind signature for Untraceable payment,
Cryptography proceedings of CRYPTO’82, 1982.

[26] M. Abe and E. Fujisaki, How to date blind signatures,
Proc. Advances in Cryptology-ASIACRYPTO ’96, LNCS
1163, pp. 244– 251, 1996.

[27] Goldreich, O.,Micali, S. , Wigderson, A , Proofs that yield
nothing but their validity , ACM,1991.

