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ABSTRACT

Before releasing anonymized microdata (individual data) it
is essential to evaluate whether: i) their utility is high enough
for their release to make sense; ii) the risk that the anonymized
data result in disclosure of respondent identity or respondent
attribute values is low enough. Utility and disclosure risk
measures are used for the above evaluation, which normally
lack a common theoretical framework allowing to trade off
utility and risk in a consistent way. We explore in this pa-
per the use of information-theoretic measures based on the
notion of mutual information.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
statistical databases; H.1.1 [Models and Principles]: Sys-
tems and Information Theory; K.4.1 [Computers and So-
ciety]: Public Policy Issues—privacy

General Terms
Privacy, Information theory

1. INTRODUCTION

When a set of microdata (individual data) containing the
values of some attributes for individuals or companies is to
be released by a statistical office for research or general use,
anonymization is more often than not a legal requirement [6].
Anonymization means processing original microdata so as to
obtain masked microdata that can be released in such a way
that the respondent subjects to whom the microdata records
refer cannot be re-identified (identity disclosure) and partic-
ular attribute values cannot be associated or disassociated
with a particular respondent subject (attribute disclosure).
In order to reduce the disclosure risk, anonymization distorts
the data in some way (e.g. by perturbing them or reducing
their detail); as distortion increases, disclosure risk can be
expected to decrease. However, distortion should not be so
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severe that the anonymized data become useless, i.e., that
all information contained in the data is lost. The problem
of optimizing the trade-off between disclosure risk and in-
formation loss is known as the statistical disclosure control
(SDC) problem.

Information loss measures in SDC of microdata are usually
based on the relative discrepancy between some statistics or
models computed on the original data and on the masked
data [4]. A critique to the above measures is that, for contin-
uous attributes, relative discrepancies are unbounded! and
difficult to combine with disclosure risk; the latter is most
often measured as a probability of re-identification and is
thus bounded between 0 and 1 [14].

Probabilistic information loss measures yielding a figure be-
tween [0, 1] which can be readily compared to disclosure risk
have been proposed [9]. Let 6 be a population parameter
(on the original data) and let © be the corresponding sample
statistic (on the masked data). If the number n’ of records
of the original data is large (> 100), then

can be assumed to follow a N(0,1) distribution.

A probabilistic information loss measure pil(f) for param-
eter 0 is the probability that the absolute value of the dis-
crepancy Z is < the actual discrepancy in the masked data:

16— 6]

Var(0)

pil(6) =2- PO< Z < )

Clearly, the more different is © from 6, the greater is pil(0).

However, getting information loss and disclosure risk mea-
sures bounded in the same [0, 1] does not imply that their
semantics are entirely comparable. Indeed, probabilistic in-
formation loss measures are actually distortions mapped to

'E.g. a statistic whose value is 0 on the original data and
0.1 on the masked data has an infinite relative discrepancy
(0.1 —0)/0.



[0, 1], whereas disclosure risk is normally computed as a re-
identification probability. If information loss and disclosure
risk could be expressed with semantically similar measures,
boundedness would be irrelevant: both measures could be
unbounded without any problem.

1.1 Contribution and plan of this paper

The original contribution of this paper, developed in the fol-
lowing sections, is to explore the use of information-theoretic
measures based on the notion of mutual information in view
of providing a unified framework embracing information loss

and disclosure risk. Section 2 motivates the use of information-

theoretic measures. Section 3 describes information-the-
oretic measures for information loss. Section 4 describes
information-theoretic measures for disclosure risk. Based on
the previous measures, Section 5 presents models to trade
off information loss against disclosure risk. Section 6 lists
conclusions and issues for future research.

2. MOTIVATION

Unbounded loss measures based on relative discrepancies are
very easy to understand, but rather difficult to trade off
against a bounded risk. Probabilistic loss measures have
the following strong points:

e They can be applied to the same usual statistics 0
(means, variances, covariances, etc.) as measures based
on relative discrepancies.

e They are bounded within [0, 1], so they easily compare
to disclosure risk.

Both relative-discrepancy and probabilistic loss measures
lack an underlying theory allowing to optimize their trade-
off with disclosure risk.

The mutual information I(X;Y) between two random vari-
ables X and Y measures the mutual dependence of the two
variables and is measured in bits. Mutual information can
be expressed as a function of Shannon’s entropy:

I(X;Y)=H(X) - HX|Y) = H(Y) — HY|X)

=H(X)+H(Y) - H(X,Y)

where H(X), H(Y) are marginal entropies, H(X|Y), H(Y|X)
are conditional entropies and H(X,Y') is the joint entropy
of X and Y.

Given a symmetric, positive definite matrix ¥, let £'/2 de-
note the unique, symmetric, positive definite square root of
3. The following can be stated about mutual information
applied to random Gaussian data:

e If U and V are jointly Gaussian random vectors, and
U’ is the best linear estimate of U from V, then U’ is
a sufficient statistic, that is, I(U’; V) = I(U; V).

e If U and V are random, jointly Gaussian scalars with
correlation coefficient p, then I(U; V) = —log /1 — p2.

e More generally, if U and V are random, jointly Gaus-
sian vectors with matrix correlation

pP= E[;1/221]‘/2‘—/1/2
then
I(U;V) = —1/2logdet(I — PP")

where P? is the transpose of P, I the identity matrix
and det(+) is the determinant.

If mutual information can be used to express information
loss or/and disclosure risk, then the machinery of informa-
tion theory can be used to optimize the trade-off between
both quantities.

3. INFORMATION-THEORETIC LOSS MEA-

SURES

The attributes in a microdata set can be classified as:

e [dentifiers. These are attributes that unambiguously
identify the respondent. Examples are the passport
number, social security number, name-surname, etc.

o Key attributes. These are attributes which identify the
respondent with some degree of ambiguity. (Nonethe-
less, a combination of key attributes may provide un-
ambiguous identification.) Examples are address, gen-
der, age, telephone number, etc.

o (Confidential attributes. These are attributes which
contain sensitive information on the respondent. Ex-
amples are salary, religion, political affiliation, health
condition, etc.

We assume that the original microdata have been pre-processed

to remove all identifiers from them. Let X, Y be, respec-
tively, the key and confidential attributes in the original mi-
crodata set. Let X’ be the key attributes in the masked
microdata set (as in k-anonymization [13], we assume that
only key attributes are masked). If we focus on the dam-
age inflicted to key attributes [11], a possible information
loss measure is the expected distortion E(d(X,X’)) where
d(x,2') is a distortion measure, e.g. d(z,z’) = ||z — 2'||*.

A probably better option is to focus on how masking affects
the statistical dependence between the key and confidential
attributes. A possible measure for thisis I(X;Y)—I(X";Y).

LEMMA 1. If X' is a randomized function of X, but not
of Y, it holds that I(X;Y) — I(X';Y) > 0.

Proof:. Given three random variables X;, X2 and Xs,
define the conditional mutual information I(X1;X2|X3) as
the expected value of I(X1; X2) conditional to X3, that is,
[(X1; X2|X3) = EX3 (I(X1; X2)|X3). We have that

IX YY) +HI(XGYIX) =T1((X,X');Y) = I(X; V) +HI(X Y X)

The hypothesis of the lemma implies that X’ and Y are
conditionally independent given X, that is, I(X';Y|X) = 0.
Hence,

I(X5Y)+ I(X;Y|X) = I(X;Y)



Since I(X;Y|X’) > 0, we have that I(X;Y) < I(X;Y). O

Let us now compare the mutual information with the more
usual information loss measures based on the mean square
error (MSE) and correlations.

3.1 Mutual information vs. MSE

The MSE E(d(X, X")) = E(||X—X'||?) seems better adapted
than I(X;X’) to measuring how well statistical properties
are preserved. For example:

e A zero MSE between X and X', that is, E(d(X, X’)) =
0 implies X = X',

e However, I(X;Y) — I(X’;Y) = 0 only implies that X
and X’ are bijectively related.

Nonetheless, MSE and the mutual information are not that
different, both belonging to the family of so-called Bregman
divergences [10, 2].

3.2 Mutual information vs. correlations

The difference I(X;Y) — I(X';Y) bears some resemblance
to the relative discrepancy between correlation matrices pro-
posed as an information loss measure in [4]. However, mu-
tual information measures the general dependence between
attributes, while the correlation measures only the linear
dependence; thus the former seems superior [8]. It will be
shown below that, under some assumptions, preserving mu-
tual information preserves the covariance matrix up to a
constant factor.

4. INFORMATION-THEORETIC RISK MEA-

SURES

The mutual information I(X’; X) between the released and
the original key attributes is a measure of identity disclosure
(defined in the introduction above). Note that I(X’; X) was
previously regarded as a possible information loss measure
(which it is for key attributes).

The mutual information 7(X’;Y) between the released key
attributes and the confidential attributes is a measure of at-
tribute disclosure (defined in the introduction above). Mea-
suring risk as I(X’;Y) conforms to the ¢-closeness privacy
property [7] requiring that the distance between the distribu-
tion of Y within records sharing each combination of values
of X’ and the distribution of ¥ in the overall dataset be no
more than ¢.

5. LOSS-RISK OPTIMIZATION

Several combinations of the above loss and risk measures can
be used when trying to optimize the trade-off of information
loss and disclosure risk. Two approaches are conceivable:

e Place an upper-bound constraint on the information
loss D and minimize the disclosure risk R.

e Place an upper-bound constraint on the disclosure risk
R and minimize the information loss D (more natural

in SDC).
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Figure 1: Risk-loss as Lagrangian rate-distortion op-
timization. Rate stands for risk in the privacy set-
ting

By combining the above two approaches with the various
loss and risk measures sketched above, several optimization
models are obtained.

5.1 Model 1
In this model, disclosure risk is minimized while keeping
information loss below a certain upper bound. Disclosure
risk is measured using mutual information and information
loss is measured as the expected distortion. Hence:

R(D) = inf I(X';Y)

Pxrx

subject to E(d(X,X’)) < D

for a certain pre-specified maximum tolerable loss D.

Model 1 was related in [11] to the rate-distortion function
optimization in information theory (see Figure 1): the risk
R was assimilated to the rate and the loss D to the distor-
tion. An optimal random perturbation px/ x(2'|z) for key
attributes was obtained. Let d = D/o% be the normalized
distortion. For the case of univariate Gaussian, real-valued
X and Y, a closed form of the minimum was obtained. The
idea is to compute X’ as X’ = (1—d) X +dZ, where the noise
Z is distributed according to N (u, %aﬁ) independently of
X and Y. This yields:

1
Ring = -5 log(1 — (1 — d)pky)
p?ﬁ’/ﬂx(w/\w) =N((1-d)z +dux,d(l —d)ok)

5.2 Model 2

If we maintain the same risk and loss measures, but take
the more natural approach of minimizing D for a maximum
tolerable risk R, we get

D(R) = inf E(d(X,X"))

Pxrx



subject to I(X';Y) < R.

This problem could be related to optimizing the distortion-
rate function optimization in quantization. This again yields
an optimal perturbation px/ x, which can be computed by
solving the above model.

5.3 Models 3 and 4

Model 3 below results from miniziming disclosure risk while
keeping information loss below a certain level, and using
mutual information for measuring both the disclosure risk
and the information loss:

R(D) = inf I(X;X)

Px/\x

subject to I(X;Y) — I(X";Y) < D.

Finally, Model 4 is obtained by maintaining the same mea-
sures, but minimizing the information loss while keeping dis-
closure risk below an upper bound:

D(R)= inf I(X;Y)—I(X";Y)

Pxr x
subject to I(X;X') < R.

5.4 Model 4 and synthetic data generation
Synthetic data generation, that is, generation of random
simulated data preserving some properties of original data,
can be viewed as a form of masking by perturbation [1]. If
we want to generate synthetic key attributes X’ in such a
way that the connection between key attributes and confi-
dential attributes is minimally affected, we can use Model 4
to compute px/|x. Synthetic X’ can be generated by draw-
ing from px/|x.

5.5 Mutual information vs. covariance preser-

vation
We justify that preserving mutual information (that is, achiev-
ing D(R) = 0 in Model 4) preserves the covariance matrix
(up to a constant factor).

Let X and Y be zero-mean, jointly Gaussian random vari-
ables, R- and R"-valued, respectively. Let X’ = aTY be the
best linear MSE estimate of X given Y, for a € R*¥. Then
a = Exyz;l.

On the one hand, X’ is a sufficient statistic for X given Y,
that is, I(X";Y) = I(X;Y) (see [12]).

On the other hand, the covariance matrix is preserved when
replacing X by X’ because

Yxry = nyz;lzy =Yxy.

6. CONCLUDING REMARKS AND FUTURE
RESEARCH

Information loss measures based on relative discrepancies
are awkward to combine with risk measures in order to opti-
mize the risk-loss trade-off. Probabilistic loss measures are a
step forward, but lack a theoretical framework. We have ex-
plored here loss and risk measures based on information the-
ory, namely on mutual information. Models for optimizing
the information-theoretic risk-loss trade-off when perturbing
data and generating synthetic data have been presented. It
has been shown that preserving mutual information offers
covariance matrix preservation.

However, this paper is intended to be a starting point rather
than a conclusive contribution. The information-theoretic
measures and the models discussed above are just a first
step. A number of issues for future research lie open ahead:

e Relate Model 2 with distortion-rate function optimiza-
tion, a well-known problem in quantization. This should
be done in a way analogous to the connection between
Model 1 and rate-distortion function optimization es-
tablished in [11].

e In the context of synthetic data generation, devise
information-theoretic loss measures whose minimiza-
tion is equivalent to preserving a given model.

e Whenever possible, find closed-form expressions for the
optimal px/|x transformations.

e If a closed-form expression is not possible, look for a
convex optimization problem to be solved numerically
as the next most attractive option.

e Investigate the connection of mutual information with
information loss metrics other than MSE, like [5, 15,
3].
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