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ABSTRACT
In this paper we propose a method for on-line max auditing of dy-
namic statistical databases. The method extends the Bayesian ap-
proach presented in [2], [3] and [4] for static databases. A Bayesian
network addresses disclosures based on probabilistic inferences that
can be drawn from released data; we have developed algorithms to
update the network whenever the database changes. In particular,
we consider the case in which records are added or deleted, or some
sensitive values change their value. The paper introduces the algo-
rithms and discusses results of a preliminary set of of experimental
trials.
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1. INTRODUCTION
A Statistical Database (SDB) is a database system that enables its
users to retrieve only aggregate statistics (e.g., mean, max, min,
and count) for a subset of the entities represented in the database.
Consider, for example, a company database containing salaries of
employees. A user may want to determine the max or a min salary
of the employees in a subset of records in the database. He/she can-
not, however, be allowed to glean the salary of any one employee
in particular.

Several methods for protecting privacy in SDBs have been sug-
gested in the literature; see reference [1] for a survey. These meth-
ods can be classified under four general approaches: conceptual,
data perturbation, output perturbation, and query restriction. We
focus on the query restriction approach, which prevents malicious
inferences by denying some unsafe queries. In particular, we deal
with the on-line auditing problem [6], [8], [9], [10], [12]. With
on-line auditing, queries are answered one by one, in sequence,
and the auditor has to determine whether the SDB is compromised
when answering a new query.

In references [2], [3] and [4], we have proposed, for the on-line
max and min auditing, a Bayesian network (BN) as a disclosure

control tool, based on probabilistic inferences that can be drawn
from released data. The model is able to:

• deal with on-line max and min auditing without maintaining
query logs;

• deal with a probabilistic definition of privacy, independently
of the probability distribution of the sensitive field;

• manage efficiently duplicated values of the sensitive field;

• provide a graphical representation of user knowledge;

• capture user prior knowledge;

• consider the case in which a denial leaks information.

In references [2], [3] and [4], the database is static.

The original contribution of this paper is to extend the approach
proposed in [2], [3] and [4] to dynamic databases for on-line max
auditing. A static database is one that never changes after it has
been created. Most census are static: whenever a new version of
the database is created, the new version is considered to be another
static database. A dynamic databases can change over time. This
feature can complicate the privacy problem considerably, because
frequent releases of new versions may enable users to make use
of the differences among the versions in ways that are difficult to
foresee. References [15] and [11] deal with security of dynamic
statistical databases when records can be inserted or deleted from
the databases; reference [11], in particular, considers the context of
a partitioned database.

In this paper, we deal with on-line max auditing in dynamic SDBs.
More specifically, we consider the case in which some sensitive
values change their value and some records are deleted or inserted.
In the following, we provide examples that show the importance
to consider, in the on-line max auditing, a dynamic database rather
than a sequence of static databases.

EXAMPLE 1. Given two sensitive values y1 = 8 and y2 = 7,
we suppose that the user asks the max between the two values and
the auditor provides the answer 8; if a new record is inserted and
a new static database is considered, then the information about y1

and y2 is lost. As a consequence, if the user submits a new query,
for instance the max values among y1, y2 and y3, and the auditor
provides the answer 10, then y3 is disclosed.



In order to deal with the insertion of new records in dynamic SDBs,
we will build a BN as shown in Section 3.1.

EXAMPLE 2. Given two sensitive values y1 = 8 and y2 = 7,
we suppose that the user asks the max between the two values and
the auditor provides the answer 8; if the record corresponding to
y1 is deleted and a new static database is considered, then the in-
formation about y2 is lost, even if the user knows that y2 ≤ 8. As a
consequence, if the user submits a new query, for instance the max
values between y2 and y3, and the auditor provides the answer 10,
then y3 is disclosed.

The deletion of records in dynamic databases is discussed in Sec-
tion 3.2.

EXAMPLE 3. Given two sensitive values y1 = 8 and y2 = 7,
we suppose that the user asks the max between the two values and
the auditor provides the answer 8; if y1 changes into 10 and a new
static database is considered, then if the user asks again the max
value between y1 and y2 and the auditor provides the answer, that
is 10, the user infers that either y1 or y2 is increased. Moreover, if
he has prior knowledge, and knows that the value of y1 is increased,
then y1 is disclosed.

Thus, in our approach, we consider dynamic databases and we as-
sume at first that the user does not know if a sensitive value changes
or not (Section 3.2.1), then we assume that the user has prior knowl-
edge about a value increase or decrease (Section 3.2.2).

The paper is organized as follows: Section 2 introduces notions
and definitions useful in the sequel of the work; in particular, in
Section 2.1 we summarize the Bayesian approach for on-line max
auditing introduced in our previous works [2], [3] and [4] for static
SDBs. Section 3 extends the previous model to dynamic databases.
Section 4 discusses the results of a preliminary set of experiments
and Section 5 provides conclusion and future work.

2. PRELIMINARIES
We assume that:

• T is a table with n records;

• K = {1, 2, ..., n};

• X and Y are two fields of T such that the elements of X rep-
resented by xi, with i ∈ K, are distinct among them (each
xi identifies uniquely a subject) and the elements of Y , rep-
resented by yi, are real numbers;

• the sensitive field Y has r distinct values (r ≤ n);

• the private information takes the form of an association, (xi, yi)
⊆ X × Y , that is a pair of values in the same tuple;

• a l-query q is a subset of K, that is q = {i1, ...il} ⊆ K;

• the answer corresponding to a max query q is equal to max
{yij |ij ∈ q};

• m is the answer to a max query;

Table 1: n = 4, r = 3. The sensitive field Y is ordered in
decreasing way.

X Y
x1 9
x2 8
x3 8
x4 5

• l = |q| > 1, because if q = {j}, clearly, yj is breached
irrespective of the value of m and the association (xj , m) is
disclosed.

In Section 2.1, we will describe the approach used in references [2],
[3] and [4], focusing only on max on-line auditing.

We consider the following definition of probabilistic compromise:

DEFINITION 1. A privacy breach occurs if and only if a private
association is disclosed with probability greater or equal to a given
tolerance probability tol. If a private association is disclosed with
tol = 1, then the SDB is fully compromised.

Finally, we recall the definition of upper bound provided in refer-
ences [9] and [12]; the authors define, for each element yj , with
j ∈ K, the upper bound µj as follows:

DEFINITION 2. ∀yj , µj = min{mk|j ∈ qk with qk a max
query and mk the answer} is the minimum over the answers to the
max queries containing j.

In other words, µj is the best possible upper bound for yj that can
be obtained from the answers to the max queries.

2.1 A Bayesian approach to on-line max au-
diting

A BN is a probabilistic graphical model that represents a set of
variables and their probabilistic dependencies [14]. A BN, also
called belief net, is a directed acyclic graph (DAG) which consists
of nodes, to represent variables, and arcs, to represent dependen-
cies between variables. Arcs, or links, also represent causal influ-
ences among the variables. The strength of an influence between
variables is represented by the conditional probabilities which are
summarized in a conditional probability table (CPT). If there is an
arc from node A to another node B, A is called a parent of B, and
B is a child of A. The set of parent nodes of a node Xi is denoted
parents(Xi).

The size of the CPT of a node Xi depends on the number s of its
states, the number n of parents(Xi), and the number sj of parent
states, in the following way:

size(CPT ) = s ·
n∏

j=1

sj .

For every possible combination of parent states, there is an entry
listed in the CPT. Notice that for a large number of parents the CPT
will expand drastically.



Figure 1: Temporal transformation for a max 3-query. y1 = 9
is the max value.

Figure 2: The private association (x1, 9) is disclosed with prob-
ability equal to 0.7273.

If Xi has no parents, its local probability distribution is said to be
unconditional, otherwise it is conditional. If the value of a node is
observed, then the node is said to be an evidence node.

In our approach, we use a BN to encode user knowledge about
the private associations after a sequence of max queries. The BN
contains nodes encoding the sensitive values and nodes encoding
the max queries; by adding evidence on nodes encoding the max
queries, the BN is able to compute the probability of disclosing the
sensitive values.

Independence of causal influence (ICI) [16] among local parent-
child or cause-effect relationship allows for further factoring. ICI
has been used to reduce the complexity of knowledge acquisition.
The size of conditional distribution that encodes the max (or min)
operator can be reduced when the n-ary max (resp. min) operator
is decomposed into a set of binary max (resp. min) operators. Two
well known approaches to the decomposition are: parent divorcing
[13] and temporal transformation [7]. We use temporal transforma-
tion, which constructs a linear decomposition tree where each node
encodes a binary operator (see Example 4).

EXAMPLE 4. Given Table 1 and let q = {1, 2, 3} be a max
query, then the 3-query is decomposed into a set of binary max
queries by means of a temporal transformation as shown in Figure
1. At first we build the binary max node encoding the max between
y1 and y2, then we build the binary max node encoding q.
We can see that if we insert evidence on node encoding q, we obtain
for i = 1, 2, 3, the probabilities P (yi = 9|m = 9).

REMARK 1. In this paper, we assume that the user has not

prior knowledge about the probability distribution of the sensitive
field; for instance if the user knows that a sensitive value yi is such
that yi ≤ m then we assume that P (yi < m|yi ≤ m) = P (yi =
m|yi ≤ m) = 1

2
. In our previous work [4], we have also consid-

ered the case in which the probability distribution of the sensitive
field is known.

REMARK 2. In references [2], [3] and [4], we assume that the
sensitive field is ordered in a decreasing way; in Section 3, in or-
der to consider the insertion of new records, we will remove this
assumption.

REMARK 3. The size of the CPT for a BN encoding a temporal
transformation grows linearly with the size of the query [4].

We build the BN for the on-line max auditing problem at run-
time, that is we execute a temporal transformation after each max
user query and decide whether or not to answer the query.

EXAMPLE 5. We continue Example 4. We suppose that the user
submits the max query q2 = {1, 4} with m2 = 9. The BN in Figure
1 changes in the BN in Figure 2. Since the private association
(x1, 9) is disclosed with probability equal to 0.7273, by Definition
1, the privacy is preserved if and only if we choose a tolerance
value greater than 0.7273.

The answer to a query is denied if (see [4]):

1. the privacy is breached (see Definition 1);

2. the probability that a sensitive variable is equal to a value is
greater or equal to a given tolerance threshold (even if this
value is not the actual value of the sensitive data item);

3. for a possible answer to qt, the probability that a sensitive
variable is equal to a value is greater or equal to a given tol-
erance threshold (even if this value is not the actual value of
the sensitive data item).

Item 2 and 3 allow us to deal with the case in which denial leaks
information.

In the following, we recall some details of the BN (see [5]) that are
useful to understand the sequel. In order to reduce total CPT size
of the BN, it is optimized in the following way:

• an evidence node has not children. Let q1 = {i1, ..., il}
and q2 = {i1, ..., il, ..., il+k} be two max queries of size l
and l + k respectively, with q1 ⊂ q2 and m = m1 = m2.
Thus, the temporal transformation for q2 is such that the first
l−1 max nodes overlap with the nodes of the temporal trans-
formation for q1, and the other nodes have the same states of
the the first l − 1 max nodes. Thus, after q1 and q2, each
max node has two states: r1 encoding the case in which the
node value is less than m, and r2 encoding the case in which
the node value is equal to m. Because the last node in the
temporal transformation of q1, that is the node encoding the
binary max operator between max{y1, ..., yl−1} and yl, is



a)

b)

Figure 3: On-line max auditing. An evidence node has not chil-
dren. a) q1 = {1, 2}. b) q2 = {1, 2, 3, 4}

an evidence node and its value is equal to m with probability
1, then the other nodes of temporal transformation of q2 have
the same states and, obviously, their value is equal to m with
probability equal to 1, without inserting evidence. Thus, it
is not needed to store these nodes: it is sufficient, for each
sensitive variable yj ∈ {yl+1, yl+2, ..., yl+k}, by Remark 1,
to set Pr(yj < m|yj ≤ m) = 1

2
and Pr(yj = m|yj ≤

m) = 1
2

.

The reasoning is analogous if q1 = {i1, ..., il, ..., il+k} and
q2 = {i1, ..., il}.

EXAMPLE 6. Given Table 1 and q1 = {1, 2}, the corre-
sponding BN is shown in Figure 3 a). After the answer to
q2 = {1, 2, 3, 4}, the BN is updated as shown in Figure 3 b).
Because related to q1 there is an evidence node, this node has
not children and the nodes encoding y3 and y4 have proba-
bility distribution equal to ( 1

2
, 1

2
).

• each child of yj has the same states of yj . If the sensitive
variable is in more than one query then only the queries with
max value equal to µj are useful to compute the probability
that yj is equal to µj .

Given j ∈ K = {1, ..., n}, let q1 and q2 be two max queries
such that j ∈ q1 ∩ q2 and µj = m1 < m2. Then, the
states of yj are: r1 encoding the case in which yj is less
than m1; r2 encoding the case in which yj is equal to m1.
Moreover, the max node in the temporal transformation of q2

with parent yj is deleted. Finally, if j is the last element of
q2, that is q2 = {i1, ..., il} with il = j, then it is needed to
insert evidence on node encoding max{i1, ..., il−1}.

The reasoning is analogous if m1 > m2 = µj .

If there is a set of m queries, such that j ∈ ⋂k=m
k=1 qk, it is

possible the reasoning in an analogous way.

EXAMPLE 7. Given Table 1 and q1 = {1, 2, 3, 4}, the
corresponding BN is shown in Figure 4 a). Given q2 =
{3, 4}, since m1 = 9 > m2 = µ3 = µ4 = 8, the max node
encoding q2 is added, the nodes in temporal transformation

a)

b)

Figure 4: On-line max auditing. Each child of yj has the same
states of yj . a) q1 = {1, 2, 3, 4}. b) q2 = {3, 4}.

of q1 with parents y3 and y4 are deleted and evidence is in-
serted on node encoding max{y1, y2}. The corresponding
BN is shown in Figure 4 b).

In conclusion, each node has only children with the same states and
an evidence node has not children.

REMARK 4. We can see that there is not a max node without
evidence and without children; each leaf, that is a max node, is an
evidence node.

3. A BAYESIAN APPROACH FOR DYNAMIC
DATABASES

In this section we assume that the database is updated, and inser-
tions, deletions, and changes in the sensitive values are possible. In
particular, we assume that the user knows if:

1. a new record is inserted;

2. a record is deleted.

If a sensitive values changes, then at first we suppose that the user
does not know if a sensitive value is modified or not (Section 3.2.1),
then we suppose that the user knows if a sensitive value increases
or decreases (Section 3.2.2).

3.1 Inserting records
The insertion of new records in our model is very straightforward.
Since we have to insert new records in the DB, in contrast with the
previous models in [2],[3], [4], we do not order the DB by sensitive
field in decreasing way, but when an user submits a max query q
with answer equal to m, we select an element i ∈ q such that
yi = m and the first node in the temporal transformation will be the



Table 2: n = 3, r = 3. The sensitive field Y is not ordered in
decreasing way.

X Y
x1 5
x2 4
x3 9

Table 3: n = 6, r = 5. The sensitive field Y is not ordered in
decreasing way.

X Y
x1 4
x2 5
x3 8
x4 2
x5 1
x6 5

node encoding yi. This ensures that the temporal transformation is
well posed.

EXAMPLE 8. Given Table 2, if the user submits the max query
q = {1, 2, 3}, the corresponding BN is similar to BN in Figure 1
but the first node in the temporal transformation is the node en-
coding y3 and not the node encoding y1. Thus, at first we build
the binary max node encoding the max between y3 and y2, then we
build the binary max node encoding q.

In this way, it is possible to add new records in the database and to
store the user knowledge about the other records.

EXAMPLE 9. Given Table 1, we suppose that the user knows
the max value between y1 and y2 and the corresponding BN, en-
coding user knowledge, is shown in Figure 3 a). If a new record,
with sensitive field y5 = 20, is added in the table and the user asks
the max value among y1, y2 and y5, then our model is able to use
the stored user knowledge, that is max{y1, y2} = 9, to deny the
answer.

3.2 Deleting and modifying records
We deal with the deletion of records under the two following con-
ditions:

Condition 1 If a record is deleted then it will be never inserted into
the database again;

Condition 2 If a record is deleted then the value of its sensitive
field can be disclosed.

We suppose that the record corresponding to xi (each xi identifies
uniquely a subject) is deleted from the DB or the sensitive value yi

changes, in particular it increases or decreases.

Then, if Q = {q1, ..., qt} is the set of queries already submitted,
two cases are possible:

• there is not a query qj ∈ Q such that i ∈ qj ;

Figure 5: BN encoding user knowledge after max queries q1 =
{1, 2, 3, 4} and q2 = {2, 3, 5, 6}.

• there is one or more queries containing i.

Only in the second case, we have to update the BN.

Therefore, we consider the following cases:

1. the record corresponding to xi is deleted;

2. yi increases;

3. yi decreases.

In the sequel, µi denotes the upper bound of yi (see Definition 2).

3.2.1 The user does not know if a sensitive value has
changed

In this section, we assume that if a record is deleted or a sensitive
value changes, then the BN encoding user knowledge is updated in
such way that only the user information that remains valid for the
new version of the database is stored. For instance, if a sensitive
value changes its value and the previous user information, about
this value and the max queries including it, is false, then this infor-
mation is deleted. As a matter of fact, this false information does
not help the auditor to preserve the privacy and to store it requires
memory.

Under the hypotheses that the user does not know if a sensitive
value yi increases or decreases, then:

1. let qj be a max a query such that i ∈ qj . If the record corre-
sponding to xi is deleted then the user knows that mqj\{i} ≤
mj ;

2. let qj be a max a query such that i ∈ qj . If the value of yi

increases more than its upper bound then a part of the BN
provides false information and it must be deleted; else, if the
value of yi increases less or equal to its upper bound, then
the BN is not updated;

3. let qj be a max a query such that i ∈ qj . If the value of
yi decreases then: if the node encoding yi is the first node
in a temporal transformation then a part of the BN provides
false information (the leaf node in the corresponding tempo-
ral transformation is not an evidence node) and a part of the
BN can be deleted; else, if there is not a temporal transfor-
mation such that the node encoding yi is the first node, then
the BN is not updated.



a) b)

c) d)

e) f)

Figure 6: We update the BN in Figure 5 when: a) the record corresponding to x3 is deleted (by means of Algorithm 1 or Algorithm
2) or y3 increases (by means of Algorithm 1 or Algorithm 2); b) the record corresponding to x2 is deleted (by means of Algorithm
1 or Algorithm 2) or y2 increases more than 8 (by means of Algorithm 1) or y2 increases (by means of Algorithm 2); c) the record
corresponding to x1 is deleted (by means of Algorithm 1 or Algorithm 2) or y1 increases more than 8 (by means of Algorithm 1) or
y1 increases (by means of Algorithm 2); d) the record corresponding to x4 is deleted (by means of Algorithm 1 or Algorithm 2) or
y4 increases more than 8 (by means of Algorithm 1) or y4 increases (by means of Algorithm 2); e) the record corresponding to x5 is
deleted (by means of Algorithm 1 or Algorithm 2) or y5 increases more than 8 (by means of Algorithm 1) or y5 increases (by means
of Algorithm 2); f) the record corresponding to x6 is deleted (by means of Algorithm 1 or Algorithm 2) or y6 increases more than 8
(by means of Algorithm 1) or y6 increases (by means of Algorithm 2).

EXAMPLE 10. Given Table 3, if the user gets the answers to the
max queries q1 = {1, 2, 3, 4} and q2 = {2, 3, 5, 6}, with m1 =
m2 = 8, then the BN encoding user knowledge is shown in Figure
5.

If the record corresponding to x3 (resp. to x2) is deleted from the
DB, then the user does not know if m1 and m2 are equal or not to
8, but he knows that each yi with i 6= 3 (resp. i 6= 2) is less or
equal to 8. The corresponding BN is shown in Figure 6 a) (resp.
Figure 6 b)).

If the record corresponding to x1 (resp. to x4) is deleted from the
DB, then the user does not know if m1 is equal or not to 8, but he
knows that each yi with i 6= 1 (resp. i 6= 4) is less or equal to
8 and he knows the information derived from evidence on m2=8.
The corresponding BN is shown in Figure 6 c) (resp. Figure 6 d)).

If the record corresponding to x5 (resp. to x6) is deleted from the
DB, then the user does not know if m2 is equal or not to 8, but he
knows that each yi with i 6= 5 (resp. i 6= 6) is less or equal to
8 and he knows the information derived from evidence on m1=8.
The corresponding BN is shown in Figure 6 e) (resp. Figure 6 f)).

EXAMPLE 11. Given Table 3, if the user gets the answers to the

max queries q1 = {1, 2, 3, 4} and q2 = {2, 3, 5, 6}, with m1 =
m2 = 8, then the BN encoding user knowledge is shown in Figure
5.

If y3 increases (resp. y2 increases more than 8), then m1 and m2

are not equal to 8; thus, we store only user knowledge about yi with
i 6= 3 (resp. i 6= 2), that is yi ≤ 8. See Figure 6 a) (resp. Figure 6
b)).

If y1 (resp. y4) increases more than 8, then m1 is not equal to
8; thus, we store only user knowledge about yi with i 6= 1 (resp.
i 6= 4), that is yi ≤ 8, and the information derived from evidence
on m2=8. See Figure 6 c) (resp. Figure 6 d)).

If y5 (resp. y6) increases more than 8, then m2 is not equal to
8; thus, we store only user knowledge about yi with i 6= 5 (resp.
i 6= 6), that is yi ≤ 8, and the information derived from evidence
on m1=8. See Figure 6 e) (resp. Figure 6 f)).

If y3 decreases, then it can be that m1 or m2 is not equal to 8;
moreover, if y2 < 8, then the temporal transformations for q1 and
q2 are not well posed. Thus, we store only user knowledge about yi

(i = 1, 2, 3, 4, 5, 6) but not about the max nodes. See Figure 7.



Figure 7: Update BN in Figure 5 by means of Algorithm 1 when
y3 decreases.

If y2, y1, y4, y5, or y6 increases less than 8 (or decreases), then
m1 and m2 are still equal to 8 and we do not need to update the
BN; it remains as in Figure 5.

Algorithm 1 describes how to update the BN. In the algorithm, we
use the following notation:

• MaxNode is a node encoding a max query or a max sub-
query.

• TypeModify indicates the kind of update. It is equal to
’M’ if the sensitive value yi changes; it is equal to ’D’ if the
record corresponding to xi is deleted from the database;

• if TypeModify is equal to ’M’ then newV alue is the new
value of yi;

• if MaxNode has not children then children.size = 0;

• if MaxNode is not an evidence node then evidenceIsEntered =
false;

• µi is the upper bound of yi before of its modification.

Algorithm 1
for each MaxNode containing i do

if yi is the first node in the temporal transformation
of MaxNode then

delete MaxNode
else

if (TypeModify==’M’ AND µi < newV alue)
OR ( TypeModify==’D’) then

delete MaxNode
end if

end if
end for
while exists MaxNode such that:
children.size=0 AND evidenceIsEntered=false do

delete MaxNode
end while
if (TypeModify==’M’ AND µi < newV alue)
OR ( TypeModify==’D’) then

delete node encoding yi

end if

3.2.2 The user knows if a sensitive value increases
or decreases

Under the hypotheses that the user knows if a sensitive value yi

increases or decreases, then:

1. let qj be a max a query such that i ∈ qj . If the user knows
that the record corresponding to xi is deleted, then he knows
that mqj\{i} ≤ mj (as in Section 3.2.1);

2. let qj be a max a query such that i ∈ qj and mj = µi. If the
user knows that the value of yi increases, then he does not if
yi ≤ mj or yi > mj ;

3. let qj be a max a query such that i ∈ qj and mj = µi. If the
user knows that the value of yi decreases, then he knows that
yi < mj .

EXAMPLE 12. If the user gets the answers to the max queries
q1 = {1, 2, 3, 4} and q2 = {2, 3, 5, 6}, with m1 = m2 = 8, then
the BN encoding user knowledge is shown in Figure 5.

If the user knows that y3 increases (resp. y2), then he has not
information about y3 (resp. y2), because one the following cases
are possible: y3 < 8 (resp. y2 < 8); y3 = 8 (resp. y2 = 8); y3 >
8 (resp. y2 > 8). As a consequence, he has not information about
m1 and m2, he knows only that yi ≤ 8, ∀i 6= 3(resp. i 6= 2). See
Figure 6 a) (resp. Figure 6 b)).

If the user knows that y1 increases (resp. y4), then he has not infor-
mation about y1 (resp. y4). As a consequence, he has not informa-
tion about m1, he knows only that yi ≤ 8, ∀i 6= 1(resp. i 6= 4)
and the information derived from evidence on m2 = 8 . See Figure
6 c) (resp. Figure 6 d)).

If the user knows that y5 increases (resp. y6), then he has not infor-
mation about y5 (resp. y6). As a consequence, he has not informa-
tion about m2, he knows only that yi ≤ 8, ∀i 6= 5(resp. i 6= 6)
and the information derived from evidence on m1 = 8 . See Figure
6 e) (resp. Figure 6 f)).

If the user knows that y3 decreases (resp. y2), then he knows that
y3 < 8 (resp. y2 < 8) and that m1 ≤ 8 and m2 ≤ 8. Thus, we add
evidence on the node encoding y3 (resp. y2), and remove evidence
on the max nodes encoding q1 and q2. In alternative to removing
evidence on the max nodes, we obtain the same probabilities for
nodes yi ∀i 6= 3(resp. i 6= 2) if we delete all max nodes and
we store only node encoding yi ≤ 8, ∀i 6= 3(resp. i 6= 2). See
Figure 8 a) (resp. Figure 8 b)).

If the user knows that y1 decreases (resp. y4), then he knows that
y1 < 8 (resp. y4 < 8), that yi ≤ 8, ∀i 6= 1(resp. i 6= 4) and
information derived from evidence on m2 = 8. See Figure 8 c)
(resp. Figure 8 d)).

If the user knows that y5 decreases (resp. y6), then he knows that
y5 < 8 (resp. y6 < 8), that yi ≤ 8, ∀i 6= 5(resp. i 6= 6) and
information derived from evidence on m1 = 8. See Figure 8 e)
(resp. Figure 8 f)).

Algorithm 2 describes how to update the BN. We use the same
notation used in Algorithm 1, moreover oldV alue denotes the old
value of yi before the update of the DB.

4. EXPERIMENTATION
The experimentation is conducted on a computer with the follow-
ing properties: HP Compaq dc7100; Pentium(R) 4 CPU 2.80 GHz;
2 GB of RAM. In the experimentation, set tolerance (see Defini-
tion 1) equal to tol = 0.8 and we run sequences of 100 queries. We
consider a baseball dataset in [17]; it consists of 377 records. We
have added a field ID, in such way that (ID, Salary) is the pri-
vate association, with ID the field identifying the baseball player
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Figure 8: We update the BN in Figure 5 by means of Algorithm 2, when: a) y3 decreases, b) y2 decreases, c) y1 decreases, d) y4

decreases, e) y5 decreases, f) y6 decreases.

Algorithm 2
for each MaxNode containing i do

delete MaxNode
end for
while exists MaxNode such that:
children.size=0 AND evidenceIsEntered=false do

delete MaxNode
end while
if TypeModify==’M’ then

if newValue-oldValue>0 then
delete node encoding yi

end if
if newValue-oldValue<0 then

set evidence on the first state of the node encoding yi

end if
end if
if TypeModify==’D’ then

delete node encoding yi

end if

and Salary the sensitive field. The dataset comprises 210 distinct
values of Salary. Each max query is generated in random way
with length in the range [2, ..., n]. We have conducted experimen-
tation about Algorithm 1 and Algorithm 2; in the following order
we have:

1. executed 50 random max queries;

2. updated the dataset with 7 insertions, 7 deletions and 56 mod-
ification of the sensitive values;

3. executed 50 random max queries.

Figure 9 a) shows that if we run Algorithm 1 then the CPT size
decreases to around 960 after the updates (insertions, deletions and
modification of the sensitive values) else if we run Algorithm 2
then it decreases to around 730 (see Figure 9 b). Moreover the
CPT size increases again around 1260 and 1290 after 100 queries
respectively by means of Algorithm 1 and Algorithm 2.

Thus, the results, in Figure 9 a) and 9 b), suggest that the hypothesis
of the additional user knowledge, about the modifications of the
sensitive values, allows us to optimize the CPT size after the DB
updates; however, after 100 queries, the difference between the two
CPT size is very small.

Finally, in order to analyze the utility of our auditor model, we
consider the probability to deny; intuitively, it seems that the more
an auditing scheme denies, the less useful it is. From a comparison
between the probability to deny, we can see from Figure 9 c) and
Figure 9 d) that it rises around to 0.5 with Algorithm 1 and around
to 0.4 with Algorithm 2, after some 100 queries.

We can see that, after the updates, the probability to deny in Figure
9 c) increases more speedily than the probability to deny in Figure
9 d).

This preliminary results suggest that it is reasonable to consider ad-
ditional user prior knowledge, that is to consider the case in which
the user knows if a sensitive value increases or decreases, thus deal-
ing with the on-line max auditing in dynamic databases by means
of Algorithm 2. However, further experimentation is needed.

5. CONCLUSIONS AND FUTURE WORK
We propose a method to reasoning under uncertainty in on-line au-
diting of dynamic statistical databases; in particular, we consider
the case in which records are added or deleted, or some sensitive
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Figure 9: CPT size and probability to deny after 100 queries. a) Algorithm 1, b) Algorithm 2, c) Algorithm 1, d) Algorithm 2.

values change their value.

The method extends the Bayesian approach presented in [2], [3]
and [4] for static databases and, as in the previous works, the model
is able to:

• deal with on-line max auditing without maintaining query
logs;

• deal with a probabilistic definition of privacy;

• provide a graphical representation of user knowledge;

• consider the case in which denial leaks information.

The paper introduces two algorithms to update the network when-
ever the database changes and discusses results of a preliminary set
of experimental trials.

The goal of our future work is twofold:

1. to realize a further experimentation, aimed at optimizing the
algorithms;

2. to deal with on-line auditing of other statistical queries, in-
cluding joined auditing of max and min queries.
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