
Data Utility and Privacy Protection Trade-off in
K-Anonymisation

Grigorios Loukides
School of Computer Science

Cardiff University
Cardiff, UK

g.loukides@cs.cf.ac.uk

Jianhua Shao
School of Computer Science

Cardiff University
Cardiff, UK

j.shao@cs.cf.ac.uk

ABSTRACT
K-anonymisation is an approach to protecting privacy con-
tained within a dataset. A good k-anonymisation algo-
rithm should anonymise a dataset in such a way that pri-
vate information contained within it is hidden, yet the
anonymised data is still useful in intended applications.
However, maximising both data utility and privacy protec-
tion in k-anonymisation is not possible. Existing methods
derive k-anonymisations by trying to maximise utility while
satisfying a required level of protection. In this paper, we
propose a method that attempts to optimise the trade-off
between utility and protection. We introduce a measure
that captures both utility and protection, and an algorithm
that exploits this measure using a combination of clustering
and partitioning techniques. Our experiments show that the
proposed method is capable of producing k-anonymisations
with required utility and protection trade-off and with a
performance scalable to large datasets.

1. INTRODUCTION
A vast amount of data about individuals is being collected

and stored worldwide. Such data can contain private in-
formation about individuals, for example, their credit card
numbers, shopping preferences and medical records. When
the data is released for studies such as lifestyle surveys, busi-
ness analysis and healthcare research, privacy protection be-
comes a serious concern. Unfortunately, simply removing
unique identifiers (e.g. credit card numbers) from data is
not enough, as individuals can still be identified using a
combination of non-unique attributes such as age and post-
code.

K-anonymisation has been proposed to address this con-
cern [21]. Assume that a table T consists of two groups of
attributes: quasi-identifiers (QIDs) that contain information
that can potentially be used to identify individuals (e.g. age
and postcode), and sensitive attributes (SAs) that contain
sensitive information about individuals (e.g. their shopping

preferences or diagnosed diseases). A k-anonymisation of
T is a view of T such that each tuple in the view is made
identical (through some form of data generalisation) to at
least k − 1 other tuples w.r.t. QIDs. For example, Ta-
ble 1 is 3-anonymised w.r.t. Age and Postcode. Clearly,
k-anonymisation helps prevent linking sensitive information
to individuals but can affect data utility.

Id Age Postcode Disease
t1 [10-25] [NW10-30] Cancer
t2 [10-25] [NW10-30] HIV
t3 [10-25] [NW10-30] Flu
t4 [10-25] [NW10-25] Bronchitis
t5 [10-25] [NW10-25] Flu
t6 [10-25] [NW10-25] Pneumonia
t7 [10-30] [NW20-30] Bronchitis
t8 [10-30] [NW20-30] Flu
t9 [10-30] [NW20-30] HIV

Table 1: A 3-anonymisation of a dataset

For a given table, many k-anonymisations are possible.
An ideal solution should maximise both data utility and
privacy protection in anonymised data, but this is compu-
tationally not possible [18]. Various metrics have been pro-
posed to capture what a good k-anonymisation should be
and methods for deriving them heuristically [21, 15, 26]. A
popular approach is to derive k-anonymisations that retain
as much data utility as possible, while satisfying a mini-
mum level of protection required [18, 16]. This is illustrated
in Figure 1.

Figure 1: Utility-driven k-anonymisations

Here we have 3 possible k-anonymisations (a, b and c) of
the same dataset. a will not be considered because it does
not have the minimum level of protection required. Both b
and c can be considered, but since b offers better data utility,
existing methods attempt to produce b instead of c.

This approach is good for the data user as it seeks to max-
imise utility, but it may not represent the best interest of

the data owner. Thus, alternative terms of utility/privacy
trade-off need to be considered. Suppose, for example, that
the data user is required to pay for a dataset based on its
utility and is willing to pay an x amount for the dataset if an
anonymisation has a required level of utility w.r.t. a certain
measure, e.g. classification accuracy [13]. Knowing that the
utility offered by anonymisation c is still sufficient for the
user’s requirement (see Figure 2), the owner may want to
produce c instead of b, as it offers better protection while still
satisfying the user’s utility requirement. Another example
comes from location privacy preserving systems, where how
location information is anonymised through data generali-
sation must satisfy both quality of service and identification
protection requirements [10]. Since providing a certain level
of protection may result in unacceptable quality of service
in such applications, a desired trade-off between utility and
privacy requirements is necessary.

Figure 2: Tradeoff-driven k-anonymisations

In fact, data users and owners have often conflicting re-
quirements, thus detailed control of the level of utility and
protection of anonymised data is necessary to help them
reaching a compromise [9]. In this paper, we consider how k-
anonymisations with an optimal trade-off between data util-
ity and protection may be produced, providing anonymisers
with an intuitive mechanism to choose a different trade-off
in case of different utility/protection requirements.

Our first contribution is a distance-based quality crite-
rion that handles both QIDs and SAs on equal terms, a
key requirement to trade-off utility and protection when k-
anonymising data. We show that our notion of distance on
QIDs attempts to capture the accuracy of aggregate query
answering, one of the main tasks anonymised data is used
for [15, 25] and generalises many existing utility measures
[17, 7]. We also explore the relation between adversar-
ial background knowledge and the protection offered by k-
anonymisation, based on a more general definition of protec-
tion than that of [18, 16, 24, 25]. More specifically, we con-
sider range disclosure, the case where sensitive information
is estimated given ranges of values. For example, the second
group in Table 1 includes {Bronchitis, F lu, Pneumonia},
allowing an attacker to estimate that an individual suffers a
respiratory problem (see Figure 3). Such inferences are not
prevented by existing protection mechanisms, posing a pri-
vacy danger in many real-world settings [23]. In response,
we propose an intuitive and accurate probabilistic measure
to capture protection under this threat model.

We also design an efficient heuristic algorithm for k-
anonymising data with a desired utility/privacy trade-off.
Our algorithm optimises the weighted sum of the amount
of generalisation of QIDs and the amount of protection of
SAs, as they are captured using our measure. Furthermore,
it uses a flexible multi-dimensional local recoding strategy

and combines clustering with partitioning to achieve both
quality and efficiency in the k-anonymisation process. Our
analysis and experimental results show that our approach
is able to produce k-anonymisations with required trade-off
between utility and protection and with a performance scal-
able to large datasets.

The paper is structured as follows. In Section 2 we discuss
how data utility and privacy protection are captured. We
present our method in Section 3 and experimentally evaluate
it in Section 4. We briefly discuss the related work in Section
5 and conclude in Section 6.

2. MEASURING UTILITY AND PROTEC-
TION

We first explain how data utility may be measured. Ob-
serve that data utility loss may occur when a table is k-
anonymised through data generalisation. For example, the
following query can no longer be answered accurately using
Table 1, since Age and Postcode values have been generalised
into ranges (note that we treat postcodes as interval values
here):

Q1: select count(*)
from Table 1
where age > 25
and postcode between NW25 and NW30

However, we can attempt to answer Q1 approximately us-
ing Table 1. Assuming uniform distribution of data, we can
calculate the probability of a tuple in Table 1 being in the
answer to Q1 as p = Rq∩R

R
, where Rq and R denote the

areas covered by Q1 and the qualifying tuples in Table 1 re-
spectively, and Rq ∩R denotes the overlap between Rq and
R. For example, Rq in this case represents an area that is
bounded by Age : [26, 30] and Postcode : [NW25, NW30].
Since we have 3 tuples in Table 1 satisfying the search condi-
tion of Q1, the estimated answer to Q1 is 3× p. Intuitively,
therefore, maximising the overlap between queries and their
coverage by anonymised data is desirable.

More generally, we observe that k-anonymisation parti-
tions a table into groups, and each group is represented
by the minimum bounding rectangle (MBR) of an m-
dimensional hyper-rectangle [3], where m is the number of
QIDs, and each side (and its length) correspond to a QID
(and the range of its generalised values) in the table. Since
Rq is not known when the data is anonymised, it makes
sense that we should minimise R, or the MBR of a group,
in order to maximise p. Our utility measure is built on this
observation.

Definition 2.1 (Q-diversity). Assume that a is a
QID, the domain of a is Da, and Va ⊆ Da is a subset of
values obtained from a. The Q-diversity of Va, denoted by
qd(Va), is defined as

qd(Va) =

8<
:

max(Va)−min(Va)
max(Da)−min(Da)

interval values

s(Va)
|Da| discrete values

where max(Va), min(Va), max(Da) and min(Da) denote
maximum and minimum values in Va and Da respectively. If
a hierarchy h exists for a, then s(V a) is the number of leaves
of the subtree of h rooted at the closest common ancestor of
the values in Va. Otherwise, s(V a) is the number of distinct
values in Va. |Da| is the size of domain Da.

For an interval-based QID, ranges are naturally captured
using the Euclidean distance. For a discrete attribute, how-
ever, there is no ordering among its values and distance be-
tween them is often defined in terms of their semantic rela-
tionships using a user-defined hierarchy [21]. For example,
Figure 3 shows one such hierarchy for Disease. Given a hier-
archy, distance between a group of discrete values can then
be defined as the ratio of the number of leaves of the sub-
tree rooted at the closest common ancestor of these values
to the domain size [26]. If there is no hierarchy for a discrete
attribute, we assume that the distance between any pair of
values is equal. Q-diversity can handle all different types
of QIDs uniformly, being more general than the Maxsize [7]
and Usefulness [17] utility measures, which cannot handle
ordered discrete attributes.

Figure 3: A hierarchy for Disease

Based on Q-diversity, we define data utility to be the av-
erage Q-diversity across groups over all QIDs, assuming at-
tribute independence. Intuitively, utility reflects the average
amount of generalisation that each group of tuples incurs,
and a small score is preferred.

Definition 2.2 (Utility). Assume that a table T
comprised of m QIDs {a1, . . . , am} is clustered into groups
{g1, g2, . . . , gh}, such that |gj | ≥ k, 1 ≤ j ≤ h, and tuples of
gj will have the same values in each QID after anonymisa-
tion. The utility of T under this clustering is defined as

utility = avg(

mX
i=1

qd(πai(g1)), . . . ,

mX
i=1

qd(πai(gh)))

where qd(πai(gj)) denotes the Q-diversity of group gj w.r.t.
ai, 1 ≤ j ≤ h and 1 ≤ i ≤ m.

To explain how privacy protection is captured, we need to
consider how sensitive information about individuals may
be learned from a k-anonymised table. For our analysis, we
assume that information about an individual I is modelled
as a single tuple tI in the anonymised dataset (the reader
is referred to [25] for models considering multiple tuples),
the attacker has identified the group (called covering group)
that contains tI , and he attempts to determine the SA value
sI for I. We note that in practice it is often sufficient for the
attacker to obtain the SA value within a range, e.g. salary in
$40-42K or a disease being “virus”, in order for the privacy
to be considered breached. We therefore allow ranges to be
used to model attackers’ estimation power in our measure of
protection.

Some existing frequency-based protection measures, such
as l-diversity [18], (a, k)-anonymity [24] and p-sensitive k-
anonymity [22], consider attackers with zero estimation
power. Thus, they do not prevent range disclosure, since
groups with a very small range can be formed, even though

salary values are distinct. T -closeness [16] requires group-
ing SA values with a distribution similar to that of the SA
value in the whole dataset, effectively assuming attackers
with maximum estimation power when these two distribu-
tions are identical. However, SA values can still be accu-
rately estimated, when the original distribution allows such
inferences for example.

We assume that the attacker attempts to determine sI

within a specified range having width r and model the pro-
tection for I’s sensitive information as the probability of a
range r covering sI being disclosed. Observe that a tuple tj

in the covering group for tI (including tI itself) contributes
to attacker’s estimate only when the distance between tj and
tI ’s SA values is less than or equal to r. For example, when
r includes “respiratory problem”, all pairs containing values
“Flu”, “Bronchitis” and “Pneumonia” can be estimated.
We capture this as pairwise contribution (pc). Intuitively,
a larger pc score implies a smaller distance between tj and
tI ’s SA values, and tj contributes more to the disclosing of
sI .

Definition 2.3 (Pairwise Contribution). Assume
that a is an SA, the domain of a is Da, and vi, vj are a
pair of values obtained from a. The pairwise-contribution
for vi, vj is defined as:

pc(vi, vj) =

8<
:

1− |vi−vj |
max(Da)−min(Da)

interval values

1− s({vi,vj})−1

|Da| discrete values

max(Da), min(Da), s({vi, vj}) and |Da| have same defini-
tions as those in Definition 2.1.

Assuming that each sensitive value can be estimated
equally likely for any individual in a group [25], we mea-
sure the protection of sensitive information for the group as
the ratio of total contribution the attacker obtains from the
SA values in the group for all individuals, to the maximum
contribution that the attacker could possibly have from the
group. We call this measure S-diversity.

Definition 2.4 (S-diversity). Assume that a is an
SA, the domain of a is Da, and Va ⊆ Da is a subset of
values obtained from a. The S-diversity of Va for a given
range r, denoted by sd(Va, r), is defined as:

sd(Va, r) =

P
∀vi,vj∈Vas.t.pc(vi,vj)≥(1−r) pc(vi, vj)

|Va|2

where pc(vi, vj) is given in Definition 2.3 and r is normalised
to [0, 1].

S-diversity has two important properties. First, it can
be applied to SA values in any metric space. Consider for
example, g1 = {t1, t2, t3} and g2 = {t4, t5, t6} in Table 1
and their corresponding sensitive values in Disease. Both
groups are considered to be equally protected by some ex-
isting measures, such as l-diversity, which handle only un-
ordered discrete SAs. However, if we consider the distance
between these values according to the hierarchy shown in
Figure 3 and assume r = 0.5, then the probabilities of dis-
closing any SA value in g1 and g2, measured by S-diversity,

are 3×1
32 = 0.333 1 and

3×(1+2×(1− 3−1
5))

32 = 0.733 respectively.
1The pairs (t1, t1), (t2, t2), (t3, t3) have pc ≥ 0.5 and thus can
be estimated. Specifically, these pairs have pc = 1, hence
the S-diversity is 3×1

32 = 0.333.

This suggests that g2 offers less protection than g1 does, and
is justified as the SA values in g2 are not as diverse as those
in g1, i.e. they are all respiratory problems (see Figure 3).
Second, attacker’s estimation power can be controlled by
varying r, as opposed to t-closeness which effectively sets
r to 1 for all cases. Consider g3 = {t7, t8, t9} in Table 1,
for example. g3 is considered to offer more protection when
r = 0.5 than when r = 0.7 using the S-diversity measure.
Again, this is justified because when r = 0.5 (a narrower
estimate range is used), the value “HIV” of t9 is not con-
sidered to help the SA values of t7 and t8 to be inferred.
In contrast, t-closeness assumes that all SA values can help
an attacker’s estimation and thus considers g3 as equally
protected in both cases.

Based on this measure, the protection for a table is defined
as the average S-diversity of all its groups over SAs. A small
score means that the values in SAs are far apart from one
another and thus are better protected.

Definition 2.5 (Protection). Assume that a table T
comprised of s SAs {a1, . . . , as} is clustered into groups
{g1, g2, . . . , gh}, such that |gj | ≥ k, 1 ≤ j ≤ h, and tuples
of gj will have the same values in each QID after anonymi-
sation. The protection of T under this clustering is defined
as

protection = avg(

sX
i=1

sd(πai(g1), r), . . . ,

sX
i=1

sd(πai(gh, r)))

where sd(πai(gj), r) denotes the S-diversity of group gj w.r.t.
ai, 1 ≤ j ≤ h and 1 ≤ i ≤ s.

Finally, the discussion so far assumed a single cover-
ing group for an individual, but overlapping groups can
be created in k-anonymisation, as a result of using multi-
dimensional recoding [15]. In this case, individuals may
achieve more (but not less) protection than that measured
by S-diversity. Also, we note that weights may be used to
reflect the significance of each attribute. Due to space re-
strictions, we do not discuss these further in this paper.

3. GROUPING DATA
In this section, we present our method that combines clus-

tering with partitioning. That is, we first partition data into
suitable sub-spaces, and then cluster data in each sub-space
separately. We explain how both quality and efficiency may
be achieved in generating k-anonymisations with utility and
protection trade-off.

3.1 Threshold-Based Greedy Clustering
Clustering algorithms use heuristics and perform greedy

search in grouping data. The existing clustering heuristics
and search strategies attempt to optimise data utility [26,
5], and therefore are not useful for our purpose. To derive k-
anonymisations with “optimal” trade-off between data util-
ity and protection, we propose the following heuristic.

Definition 3.1 (Weighted Tuple diversity).
Let τ ⊆ T be a set of tuples over a set of attributes
A = {a1, a2, . . . , ap}. Without loss of generality, we assume
that the first m attributes are QIDs and the rest are SAs.
The weighted tuple diversity of τ w.r.t. A, denoted by

wtd(τ, A), is defined as:

wtd(τ, A) = wu

mX
i=1

qd(πai(τ))

m
+ wp

pX
i=m+1

sd(πai(τ), r)

m− p

where πai(τ) denotes the projection of τ on attribute ai,
wu, wp ∈ [0, 1] are the weights, and we require wu + wp = 1.

The idea of optimising the weighted sum of an
information-loss and a protection measure is not new. It
has been successfully applied in [17]. However, our formula-
tion has two interesting properties. First, we achieve a much
stronger notion of protection. This is because, as opposed
to [17], S-diversity can effectively prevent range disclosure.
Second, attributes of any type are treated uniformly, there-
fore datasets with mixed attributes can be handled. How-
ever, deriving optimal k-anonymisations using our heuristic,
as specified in Definition 3.2, is NP-hard (proof follows [1]).

Definition 3.2 (Optimal clustering). Let T be a
table consisting of n tuples and p attributes A =
{a1, a2, . . . , ap}. Given a set of user specified weights wu, wp

and a range r as defined in Definitions 3.1 and 2.4 re-
spectively, an optimal clustering of T is a partition P =
{c1, . . . , ch} of T such that |cj | ≥ k, j = 1, . . . , h,

Th
j=1 cj =

∅,
Sh

j=1 cj = T , and its average weighted tuple diversity

avg wtd(T, A) =
Ph

j=1 wtd(cj ,A)

h
is minimal.

Thus, we introduce a heuristic threshold-based greedy clus-
tering algorithm (shown in Algorithm 1) which works as fol-
lows. It randomly picks up a tuple ti as the seed of a cluster
and removes it from T in step 2. In steps 3-7 it repeatedly
finds the closest tuples to this cluster, one at time, and adds
them into the cluster until a threshold is reached. We find a
tuple tj that is closest to the cluster in step 4 by computing
wtd({c ∪ {tj}}, A) according to Definition 3.1. If adding tj

into the cluster will not cause a threshold (δ), which controls
the maximally-allowed weighted tuple diversity in a group,
to be exceeded (step 6), then tj will be added into the clus-
ter and removed from T (step 7). If δ is exceeded, then the
size of the created cluster is checked in step 8. If it is greater
than k, tuples in the cluster are anonymised using a local
recoding function, else this cluster is rejected. The process
is repeated until all tuples of T are processed. We treat re-
jected clusters as bad local minima (the reason will be given
in Section 3.2). Thus, we un-cluster tuples that belong in
rejected clusters after clustering, and put each one into the
cluster that will result in a minimal increment in weighted
tuple-diversity when the tuple is inserted.

Algorithm 1 Threshold-Based Greedy Clustering

1. while T 6= ∅ do
2. c← ti ∈ T ; T ← T − {ti};
3. while true do
4. find tj ∈ T s.t. wtd({c ∪ {tj}}, A) is minimum;
5. c′ ← c ∪ {tj};
6. if (wtd(c′, A) > δ) exit;
7. c← c′; T ← T − {tj};
8. if (|c| ≥ k) k-anonymise(c) else reject c;

The proposed algorithm differs from existing clustering-
based methods [5, 26, 6] in two main ways. First, it forms

clusters based on both data utility and protection, thus it
does not simply try to optimise utility. Second, it uses
a quality-based instead of a size-based stopping criterion.
Since the quality of anonymisations is not solely determined
by the size of clusters, measuring maximally-allowed infor-
mation diversity within a group is better and more meaning-
ful. On performance, Threshold-Based Greedy Clustering
has a time complexity that is similar to existing clustering-
based methods, and is quadratic to the cardinality of the
dataset.

3.2 Median-Based Pre-Partitioning
Attempts to improving clustering performance in general

have been reported in the literature. The main idea be-
hind these methods is to reduce the amount of computa-
tion required by pairwise distance comparisons by restrict-
ing search spaces using sampling [11], top-down bisection
[26] or a cheap pre-clustering step [19]. All these methods
are not efficient when a large number of small clusters are to
be created, which is the case in k-anonymisation, and their
similarity measures do not capture utility and protection,
thereby affecting the quality of k-anonymisations that clus-
tering can achieve. Thus, these solutions are not directly
useful for k-anonymisation.

We propose a pre-partitioning step that is geared toward
improving the performance of our threshold-based clustering
without significantly affecting the quality of the anonymisa-
tions it produces. It follows a kd-tree type of partitioning [8],
which partitions data recursively into subspaces along the
median of QID with the largest normalised domain. Algo-
rithm 2 shows our method. Given a set of tuples τ (initially
the entire table T), a size constraint s and a protection con-
straint δ′, the algorithm recursively derives a partition of τ
as follows. First, it finds the QID attribute of τ that has the
largest domain size and computes its median (step 2). Then,
the data is partitioned around the median2 (steps 3-5) until
τ cannot be further divided without violating constraints on
the minimum partition size k and maximum S-diversity δ′

(steps 6-7).

Algorithm 2 Median-Based Pre-Partitioning

1. Pre-partition (τ, s, δ′)
2. find attribute aj ∈ QID s.t.

values in aj have the largest range;
3. splitV al← find median(πaj (τ));
4. p← {t ∈ τ : πaj (t) ≤ splitV al};
5. p′ ← {t ∈ τ : πaj (t) > splitV al};
6. if (|p| ≥ s and |p′| ≥ s and

Ps
i=1 sd(πai (p), r) > δ′and

Ps
i=1 sd(πai (p

′), r) > δ′)
7. Pre-partition(p, s, δ′)

S
Pre-partition(p′, s, δ′);

8. else return τ ;

A good partitioning strategy for improving the perfor-
mance of clustering in k-anonymisation should satisfy three
criteria. First, it should allow the follow-up clustering to be
performed significantly more efficiently. This implies that
each subspace should contain a small number of tuples. Sec-
ond, it itself must be efficient, so that the cost of partitioning
does not offset the savings gained by clustering in smaller
subspaces. Third, the quality of clustering should not be af-

2When multiple tuples have the median value, we put half
of them in each of the resultant subspaces.

fected too much. We now discuss our partitioning strategy
in terms of these criteria.

Theorem 3.1 below shows that a significant speed up can
be achieved if the subspaces created by pre-partitioning are
relatively small, particularly when they are equal-sized. We
note that our median-based partitioning strategy creates
nearly equal-sized subspaces, as a result of splitting data
around the median, thus is good for complexity reduction.
Furthermore, it can be done efficiently [8], requiring only
O(nlog(n)) time to execute.

Theorem 3.1. Pre-partitioning of a dataset T reduces
the complexity of the threshold-based clustering algorithm to
O(s× n), where n is the size of the dataset and s the mini-
mum size of the resultant subspaces.

Proof. (Sketch) Let P = {p1, ..., pm} be a partition of
T created by applying Algorithm 2. The worst-case time
complexity of the clustering-based algorithm when applied
to each pi separately is O(

Pm
i=1 |pi|2), which is minimised

to O(m × |pi|2), when all pi are equal-sized for a fixed
m. Since we have

Pm
i=1 |pi| = m|pi| = n, the complexity

of the clustering-based algorithm with pre-partitioning be-
comes O(|pi| × n) ≈ O(s× n).

We now consider the quality issues. First, we study the
effect of pre-partitioning on data utility. Obviously, by parti-
tioning data into subspaces, we restrict the number of tuples
to be scanned while forming a cluster. Assume that s is a
subspace and a cluster c is to be formed using t ∈ s as a seed
(see Algorithm 1). We observe that the quality of c should
not be affected if the nearest neighbours of t are also in s.
This problem has been studied extensively in the context of
multi-dimensional indexes [4]. To illustrate this, we give the
following analysis.

Suppose that a dataset is cut along a QID q and two sub-
spaces sl, sr are created as a result. It is possible that sl

and sr will contain the same value in q (as we split at the
median). In such cases, we say that the two subspaces over-
lap, and when this happens, a cluster may be better formed
by considering tuples of both subspaces. Furthermore, as
splits are based on only one QID at a time, subspaces may
overlap in the remaining QIDs as well. Consider applying
pre-partitioning to the data shown in Table 2 with s = 2, for
example. Since Age has a much larger domain than those of
Height and Postcode, all splits are done around Age when
Algorithm 2 is used. This created the anonymisation shown
in Table 3, which clearly incurred more information loss if
we compare it to that shown in Table 4 which is derived
by using clustering alone. This is because, as illustrated in
Figure 4, good groups depicted as small rectangles in the
3D space of {Age,Height,Postcode}, intersect the subspaces
{S1, . . . , S4} and thus are “broken” by pre-partitioning. Con-
sequently, this results in less utility compared to what can
be achieved when clustering without pre-partitioning is ap-
plied.

So, if a clustering algorithm does not look beyond a single
subspace when deriving clusters, a large number of over-
lapping subspaces may result in poor clusters. We observe
however that the effect of overlap is significantly reduced
if we use a sufficiently larger s than k. Our partitioning
step ensures that this is the case by using a suitable sub-
space size threshold s. Unclustering tuples of rejected clus-
ters also helps, as they can be grouped together with their

Age Height Postcode Sal.
10 170 NW30 20
15 175 NW32 20
15 170 NW30 65
20 175 NW32 65
20 170 NW30 20
25 175 NW32 20
25 170 NW30 65
30 175 NW32 65

Table 2: Microdata

Age Height Postcode Sal.

[10-15] [170-175] [NW30-32] 20
[10-15] [170-175] [NW30-32] 20
[15-20] [170-175] [NW30-32] 65
[15-20] [170-175] [NW30-32] 65
[20-25] [170-175] [NW30-32] 20
[20-25] [170-175] [NW30-32] 20
[25-30] [170-175] [NW30-32] 65
[25-30] [170-175] [NW30-32] 65

Table 3: Partitioning Table 2

Age Height Postcode Sal.

[10-15] 170 NW30 20
[10-15] 170 NW30 65
[15-20] 175 NW32 20
[15-20] 175 NW32 65
[20-25] 170 NW30 20
[20-25] 170 NW30 65
[25-30] 175 NW32 20
[25-30] 175 NW32 65

Table 4: Clustering Table 2

Figure 4: Intersection between clusters and sub-
spaces when s = k

Figure 5: Utility and protection (dataset vs. sample)

closest neighbours that may lie in a different subspace. Fur-
thermore, we note that the size and shape of clusters can
also affect the quality of anonymisations, as small (i.e. hav-
ing an MBR whose perimeter is smaller than that of the
MBR of their corresponding subspace) and similar-shaped
clusters are less likely to intersect a subspace created by
median-based partitioning [20]. Our clustering step specif-
ically minimises the perimeter of the MBR and uses δ to
create clusters of similar shape.

We now examine the impact of pre-partitioning on pro-
tection. It is easy to see that using a size constraint and
splitting on the median as in [15], can create subspaces with
an arbitrarily low level of protection, even when subspaces
are large. For example, the subspaces shown in Table 3
have all the same value in Salary and thus offer no protec-
tion. We have therefore introduced a protection constraint
in Algorithm 2, avoiding to further split a subspace when
the sum of S-diversity over all SAs exceeds δ′ in either of
the resultant subspaces. This makes our partitioning aware
of the trade-off between utility and protection and helps
subsequent clustering.

As our pre-partitioning strategy remedies the problem
of overlapping and unprotected subspaces, pre-partitioning
serves well the purpose of maintaining quality of anonymi-
sations produced by our clustering step. Our experimental
results show that using an s just 5 times larger than k suf-
fices to maintain the quality of clustering, while improving
the performance of anonymisations by many orders of mag-
nitude.

3.3 Thresholds selection
In this section, we discuss how the thresholds used in our

algorithm can be set. In order to determine the thresholds
δ and δ′, we have developed a simple and efficient heuris-
tic, which is based on the following observation. Groups
derived by applying clustering on the whole dataset have
similar quality to those derived by applying clustering on a
sample of this dataset taken using random sampling with re-
placement, when the same δ is used. This is because groups

are typically of similar size and thus are not likely to be
missed by sampling. Moreover, even though some groups are
missed, quality is not significantly affected, as δ still allows
a good grouping for most clusters. Figure 5 depicts the util-
ity and protection measures of applying clustering setting
k = 5, wu = wp, r = 1 and varying δ on the Adults dataset
[12] and on a 2.5% sample of it. Observe that both utility
and protection measures are well reflected in the sample of
data. Based on these observations, we propose the heuristic
given in Algorithm 3.3.

Algorithm 3 Sampling-based selection heuristic for δ.

1. S ← sample(T); i← 1;
2. while i < max iterations do
3. split [0, 1] into 2i equal-length intervals;
4. choose the mean of each interval as δr;
5. for each δr do
6. apply Algorithm 1 to S
7. choose δr s.t. the sum of utility and

protection for S is minimum

The basic idea is that we run our clustering algorithm on a
small random sample of the dataset several times, each time
by changing the value of δ, so as to investigate the difference
in clusters quality (as it is evaluated by the sum of utility
and protection scores). Then, we choose the δ which results
in the best clustering. Furthermore, δ′ is set to the level of
protection corresponding to the best clustering found before.
This is because the mean and standard deviation of pairwise
distances between SA values do not significantly vary across
different subspaces when pre-partitioning is used with an s
larger than k, as verified by our experiments. We note that a
sample less than 2.5% and 4-6 iterations were enough to find
fairly good values for thresholds δ and δ′ for various levels
of k very efficiently. We have also experimentally found that
using s = 5× k is a fairly good choice for s as mentioned in
Section 3.2.

4. EXPERIMENTAL EVALUATION
In this section, we report experimental results. We config-

ured three versions of our algorithm: TGCU (Threshold-
based Greedy Clustering Utility with wu = 1 and wp = 0)
for optimal utility, TGCP (Threshold-based Greedy Clus-
tering Protection with wu = 0 and wp = 1) for optimal pro-
tection, and TGCB (Threshold-based Greedy Clustering
Balance with wu = 0.5 and wp = 0.5) for a balanced util-
ity and protection. We compare them to three benchmark
algorithms: Mondrian [15] is partition-based and is very ef-
ficient; K-Members [5] is clustering-based and can achieve
very good data utility; and K-Members-p is a modified ver-
sion of K-members where we changed its objective function
to optimise protection instead of utility, so it can achieve
very good protection. Both Mondrian and K-members have
been shown to achieve better utility than the global recod-
ing algorithm used by [18, 16, 24], so this algorithm was
excluded from our experiments. Our objective is to inves-
tigate how the quality of solutions with a trade-off between
utility and protection compares to those produced by meth-
ods that specifically optimise one of these properties. We
also test the impact of parameters used by our method on
data quality and examine its efficiency.

4.1 Quality of Anonymisation
For these experiments, we used the Adults dataset [12]

which has become a benchmark for k-anonymisation. The
dataset is comprised of 8 attributes and 30162 tuples. We
configured the dataset as in [13], but left out Education and
treated Marital status and Occupation as SAs. Occupation
was transformed to an interval SA, in the same way as de-
scribed in [26]. We configured the parameters of our algo-
rithms as follows: subspace size threshold s = 5×k, thresh-
olds δ and δ′ were set by the method discussed in Section
3.3, and estimation range r = 1.

For data utility, we compare our method to others in terms
of our utility measure (UM), discernability measure (DM)
[2] and average relative error (A.R.E.) (the average relative
difference between the actual and estimated query result for
all queries, when applied to the generalised dataset) [15].
As can be seen in Figure 6, TGCB substantially outper-
formed Mondrian in terms of UM, achieving a result that
is very close to that of K-Members and TGCU. TGCP and
K-Members-p performed poorly, as expected, as they do not
optimise data utility. Furthermore, all versions of our algo-
rithm achieved a low DM value as shown in Figure 7, even
though we do not restrict the size of a group like Mondrian
and K-Members do.

For the A.R.E. test, we examined two types of
COUNT-query. A type-1 query retrieves the number
of tuples satisfying randomly chosen range predicates on
{Age, Gender, Income} , while a type-2 query additionally
uses predicates involving {Race, WorkClass}. The selectiv-
ity was 1.5% and 0.5% for type-1 and type-2 queries re-
spectively. We used a workload of 10000 queries for each
query type. Estimated results were derived by computing
the probability p for each tuple, as explained in Section 2,
and summing up the probabilities for all tuples.

Figure 8 reports the normalised error in A.R.E. for Mon-
drian, K-Members and the three configurations of our algo-
rithm, for various k levels. That is, the normalised difference
in A.R.E., x−b

a−b
, where x is the A.R.E. of a method, and a, b

are the A.R.E. achieved by the best and worst A.R.E. val-

Figure 6: UM comparison (Adults)

Figure 7: DM comparison (Adults)

Figure 8: Normalised error in A.R.E. for type-1
queries (Adults)

Figure 9: Normalised error in A.R.E. for type-2
queries (Adults)

ues for a specific k. K-Members-p performed very poorly in
this test since it does not optimise utility, and thus was not
included in the computation of the normalised error values.
K-Members achieved small A.R.E. values for type-1 queries
when k was small, whereas Mondrian did well when k is
large. Interestingly, TGCU outperformed both Mondrian
and K-Members for all values of k. This is largely attributed
to the fact that both Mondrian and K-Members use size-
based stopping criteria when forming groups. As a result
some “distant” tuples were brought into a group to satisfy
size requirement, thereby increasing information loss. It is
worth noting that TGCB performed particularly well, be-
ing comparable to that of TGCU. Furthermore, TGCP per-
formed well only when k was small, as achieving protection
comes at an increased cost of utility when k is large. Then,
we examined type-2 queries, which are more difficult to be
accurately answered than type-1 queries due to the higher
dimensionality and lower selectivity. As illustrated in Fig-
ure 9, all configurations of our algorithm outperformed both
Mondrian and K-members for type-2 queries. This validates

Figure 10: Protection comparison (Adults)

Figure 11: c value in (c,l)-diversity (Adults)

Figure 12: l value in (c,l)-diversity (Adults)

that using clustering with a quality-based stopping criterion
can preserve correlations between QIDs better, achieving
more utility.

For the same runs, we also evaluated protection using our
protection measure. Comparing Figures 6 and 10, it is easy
to see that optimising data utility adversely affected protec-
tion. To compare our method with benchmark algorithms
using the (c,l)-diversity measure [18] for protection, we used
a sample created by taking the first 5000 tuples of the Adults
dataset and treated Occupation as the single, discrete SA.
Here, l is the number of distinct SA values in a group and c is
the fraction of the occurrences of the most frequent SA value
in the group and the sum of the occurrences of remaining l−1
SA values. Figures 11 and 12 illustrate the results. While
Mondrian, K-Members and TGCU created diverse groups,
similar SA values were put together and thus protection was
low. In contrast, TGCB, TGCP and K-Members-p created
groups with few but semantically distant SA values, none of
which appeared too frequently.

In summary, it is evident that the combined use of cluster-
ing and partitioning is beneficial: TGCU outperforms both
Mondrian and K-Members in query answering, while TGCP
achieves comparable protection to that of K-Members-p. In-
terestingly, TGCB demonstrated a performance that is very
close to that of TGCU and TGCB, confirming the opportu-
nity for utility and protection trade-off.

4.2 Effect of Data Skewness
It is known that partitioning may affect data utility when

data is skewed, as it creates overlapping subspaces [4]. We

tested our algorithm on a number of skewed distributions
and found that skewness had little effect on data utility.
Restricted by space, we only report the result using a syn-
thetic dataset (comprised of 8000 tuples and 5 attributes)
with standard normal distribution. The parameters of our
method were set as in Section 4.1 and we evaluated the re-
sult using UM. As illustrated in Figure 13, TGCU achieved a
result very close to that of K-Members and the performance
of TGCB was comparable to that too.

Furthermore, it is more likely that a large number of se-
mantically close SA values are grouped together when data is
skewed. Thus, Mondrian, K-Members and TGCU achieved
very low protection, as shown in Figure 14. In contrast,
TGCB was able to trade-off some utility for better protec-
tion and thus its result is comparable to K-Members-p and
TGCP. We should note, however, that much utility has to
be traded-off to achieve strong protection in presence of very
high skewness, and alternative techniques based on SA gen-
eralisation [25] might be helpful.

Figure 13: Utility comparison (Normal)

Figure 14: Protection comparison (Normal)

4.3 Effect of Parameters
We first considered the effect of the subspace size thresh-

old s used in pre-partitioning. In this experiment, we var-
ied s from 5 to the size of dataset and used TGCB with
k = 5. As illustrated in Figure 15, the quality of anonymi-
sations improves as s increases, only until the size of sub-
space reached a certain threshold (s = 5k), and remained
stable after this point. This is because the effect of over-
lapping subspaces is not significant when s becomes much
larger than k. Thus, a small s can be used in our method to
generate high quality anonymisations efficiently. We then re-
peated the same experiment on the synthetic dataset used in
Section 4.2. Quality again stopped to improve after s = 5k,
as shown in Figure 16. We in fact have observed similar
behaviour for different values of k and using other quality
metrics, but restricted by space we do not report these re-
sults here.

We also studied how the range r used in S-diversity (see
Definition 2.4) affects quality. We used TGCB on the syn-
thetic dataset with the same parameters as in the previous
experiment, treating the SA as interval-based and varying r.

Figure 15: The impact of s threshold (Adults)

Figure 16: The impact of s threshold (Normal)

As shown in Figure 17, a larger r helped TGCB to trade-off
protection for utility. This confirms the benefit of control-
ling the expected attacker’s estimation power offered by our
protection measure.

Figure 17: The impact of r in quality (Normal)

Finally, we tested the impact of weights wu, wp in quality
on the synthetic dataset. All parameters were set as in the
previous experiment, except k which was set to 10. Figure
18 illustrates the result. As can be seen, weights are able to
lead the algorithm finding a desired trade-off.

Figure 18: The impact of weights in quality (Normal)

4.4 Efficiency of Computation
The efficiency of our algorithm was studied and compared

to the other two methods. For this experiment, we fixed
k = 5 and ran the algorithms on samples of the Adults
dataset with size ranging from 500 to 10000. The results are
shown in Figure 19. We observe that K-Members and TGCB
without pre-partitioning were slow due to their quadratic
time complexity. In contrast, Mondrian is the fastest for its
log-linear time complexity. However, the runtime of TGCB

(with the pre-partitioning step) is very close to that of Mon-
drian, when the subspace size s is 5k, as in our experiments.
According to Theorem 3.1, the use of pre-partitioning re-
duces the time complexity of clustering to O(s × n), and
thus the overall time complexity of our method becomes
O(n× log(n) + n× s) ≈ O(k × n), when log(n) < s and s ≈ k.

As typically k is a small constant, our algorithm scales very
well to large datasets. In order to further test this behaviour,
we fixed k = 5 and n = 10000 and varied s from 2k to the
size of the dataset. As can be seen in Figure 20, the run-
time of our algorithm is not practically affected by s when
s < 100k , achieving a log-linear perfomance to n.

Figure 19: Runtime versus cardinality of dataset

Figure 20: Runtime versus subspace size

5. RELATED WORK
Various measures for determining the quality of a k-

anonymisation exist. For data utility, they typically quan-
tify information loss resulted from data generalisation [7, 21,
13, 26], or accuracy degradation when performing certain
tasks, e.g. query answering [15] or building classifiers [2],
using anonymised data. Our utility measure captures infor-
mation loss and is similar in principle to [17, 7], but it is more
general in that it can be applied to any type of attribute. For
protection, Machanavajjhala et al. [18] proposed l-diversity,
a frequency-based measure treating SAs having unordered
discrete values. Frequency-based measures have also been
proposed by Truta et al. [22] and Wong et al. [24]. Li et
al. [16] proposed t-closeness, a measure based on data dis-
tribution in SAs. All such measures assume that attackers
have either zero or maximum estimation power and they are
applicable only to single SAs. As a result, none of them is
able to protect SA values from being estimated. Our protec-
tion measure protects ranges from being disclosed, allowing
varying estimation power to be modelled and is applicable
to multiple SAs.

K-anonymising data can be achieved through a number
of techniques including micro-aggregation [6] and generali-
sation [21]. Generalisation-based algorithms can be classi-
fied into two groups. Some follow the global recoding model,
mapping the domain of QIDs into generalised values [14]. As
far as achieving trade-off between utility and protection is

concerned, these algorithms are rather limited in that they
only search QIDs for data groupings with optimal utility
and protection requirement is only checked as a constraint
that the resultant k-anonymisation must satisfy. The sec-
ond category of algorithms uses local recoding, which maps
the values of individual tuples into generalised ones on a
group by group basis. Most existing algorithms search the
QID space for data utility optimisation only, while in our
previous work [17] we consider balancing utility with a ba-
sic protection requirement. All of these algorithms suffer
from poor scalability [26, 5, 17]. Our method also uses local
recoding, but is driven by a heuristic that attempts to opti-
mise the trade-off between utility and protection from range
disclosure and is done very efficiently as a result combining
clustering with partitioning.

6. CONCLUSIONS AND FUTURE WORK
Existing methods do not fully consider how data utility

and protection may be traded-off while k-anonymising data.
This paper addresses this issue by developing a method
which optimises the trade-off between these two require-
ments in a controlled way. We introduce a distance-based
measure that captures both utility and protection and can
handle attributes of any type uniformly. We also develop
an efficient algorithm based on clustering with partitioning.
Our extensive experiments verify that our method produces
anonymisations with a good trade-off between data util-
ity and protection, and often outperforms methods which
specifically optimise one of these two requirements.

There are some interesting directions for future research.
First, it would be worthwhile to study how utility and pro-
tection can be traded-off when anonymised data is intended
for specific data mining applications. Second, releasing the
dominating set of anonymised tables with optimal trade-off
is worth exploring. We plan to address these issues in the
near future.

7. REFERENCES
[1] G. Aggarwal, F. Kenthapadi, K. Motwani,

R. Panigrahy, and D. T. A. Zhu. Approximation
algorithms for k-anonymity. Journal of Privacy
Technology, 2005.

[2] R. Bayardo and R. Agrawal. Data privacy through
optimal k-anonymization. In ICDE ’05, pages
217–228, 2005.

[3] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In SIGMOD ’90,
pages 322–331, 1990.

[4] S. Berchtold, C. Bohm, and H. Kriegel. Improving the
query performance of high-dimensional index
structures by bulk-load operations. In EDBT ’98,
pages 216–230, 1998.

[5] J. Byun, A. Kamra, E. Bertino, and N. Li. Efficient
k-anonymity using clustering technique. In DASFAA
’07, pages 188–200, 2007.

[6] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical
data-oriented microaggregation for statistical
disclosure control. IEEE TKDE, 14(1):189–201, 2002.

[7] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu. On
multidimensional k-anonymity with local recoding
generalization. In ICDE ’07, pages 1422–1424, 2007.

[8] J. Friedman, J. Bentley, and R. Finkel. An algorithm
for finding best matches in logarithmic time. ACM
Trans. on Mathematical Software, 3(3), 1977.

[9] G. Gates and N. Potok. Data stewardship and
accountability at the u. s. census bureau. Federal
Committee on Statistical Methodology: working
paper.

[10] B. Gedik and L. Liu. Location privacy in mobile
systems: A personalized anonymization model. In 25th
IEEE ICDCS, pages 620–629, 2005.

[11] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient
clustering algorithm for large databases. In SIGMOD
’98, pages 73–84, 1998.

[12] S. Hettich and C. Merz. Uci repository of machine
learning databases. 1998.

[13] V. S. Iyengar. Transforming data to satisfy privacy
constraints. In KDD ’02, pages 279–288, 2002.

[14] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Incognito: efficient full-domain k-anonymity. In
SIGMOD ’05, pages 49–60, 2005.

[15] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Mondrian multidimensional k-anonymity. In ICDE
’06, page 25, 2006.

[16] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In ICDE
’07, pages 106–115, 2007.

[17] G. Loukides and J. Shao. Capturing data usefulness
and privacy protection in k-anonymisation. In SAC
’07, pages 370–374, 2007.

[18] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In ICDE ’06, page 24, 2006.

[19] A. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD ’00, pages
169–178, 2000.

[20] B. L. Narayan, C. A. Murthy, and S. K. Pal. Maxdiff
kd-trees for data condensation. Pattern Recogn. Lett.,
27(3):187–200, 2006.

[21] P. Samarati. Protecting respondents identities in
microdata release. IEEE TKDE, 13(9):1010–1027,
2001.

[22] T. M. Truta and B. Vinay. Privacy protection:
p-sensitive k-anonymity property. In ICDEW ’06,
page 94, 2006.

[23] L. Willenborg and T. Waal. Statistical Disclosure
Control in Practice. Springer Berlin Heidelberg, 1996.

[24] R. Wong, J. Li, A. Fu, and K.Wang. (α, k)-anonymity:
An enhanced k-anonymity model for
privacy-preserving data publishing. In KDD ’06, pages
754–759, 2006.

[25] X. Xiao and Y. Tao. Personalized privacy
preservation. In SIGMOD ’06, pages 229–240, 2006.

[26] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.
Fu. Utility-based anonymization using local recoding.
In KDD ’06, pages 785–790, 2006.

