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ABSTRACT 

Professionals in the field of speech technology are often 

constrained by a lack of speech corpora that are important to their 

research and development activities.  These corpora exist within 

the archives of various businesses and institutions; however, these 

entities are often prevented from sharing their data due to privacy 

rules and regulations.  Efforts to “scrub” this data to make it 

shareable can result in data that has been either inadequately 

protected or data that has been rendered virtually unusable due to 

the loss resulting from suppression.  This work attempts to 

address these issues by developing a scientific workflow that 

combines proven techniques in data privacy with controlled audio 

distortion resulting in corpora that have been adequately protected 

with minimal information loss.   

1. INTRODUCTION 
“This call may be recorded for quality assurance purposes.”  We 

hear this phrase so often that we have come to ignore it.  Few of 

us think of the implications of this statement.  Whenever we call a 

customer service hotline, our entire conversation may be recorded 

and retained in a format that is easily accessible to a growing 

number of individuals. 

What exactly is done with these recordings?  We assume that “for 

quality assurance purposes” means that call center supervisors are 

simply reviewing these recordings in order to ensure that their 

service representatives (be they human or automated) are 

interacting properly with their customers.  However, our 

conversations are often used for much more than that.  

As speech technology continues to advance, call center recordings 

are becoming a valuable asset to the companies that possess them.  

These recordings provide important information to the developers 

of automated systems about how callers interact with their service 

representatives and automated systems.  Once processed, these 

recordings have a number of different internal uses.  

Potential uses of these recordings include: Natural Language 

Understanding (NLU) Classifier Model Training [13], Speech 

Recognizer Model Training [10], Emotion Detection Model 

Training [6], Construction of Intelligent Agents [28], Speech 

Application Testing, Automated Feedback Loops & Machine 

Learning [28]. 

When combined with various amounts of metadata (e.g. 

transcriptions and labels), an archive such as this makes a 

valuable corpus that can be used to help better understand and 

improve these systems.  One popular use of these corpora is as a 

set of data to train automated speech recognition systems (i.e. 

decoders – the terms decode and recognize are used 

interchangeably in this paper).  Statistical language models, 

acoustic models, as well as other probabilistic models all require 

large amounts of training data for their construction.  Speech 

corpora can also serve as excellent sources of data for use in the 

research and development of speech technology. 

In an effort to improve their systems, owners of corpora often 

desire to share data with researchers and vendors who can be of 

great assistance in these efforts.  However, corpora such as these 

usually contain large amounts of sensitive data that should not be 

shared with such entities.  Efforts to scrub this data often incur 

significant amounts of data loss that can result in corpora that are 

of diminished value because of information that has been lost in 

that scrubbing.  The lost information includes data values in the 

corpus transcriptions as well as loss of audio signal characteristics 

or prosody.  Prosodic features such as the pitch and energy in a 

speaker’s voice are valuable information for inferring information 

about the speaker’s emotion and context. 

The need to minimize the risk of disclosure and also minimize 

information loss presents an obvious conflict that is hindering the 

advance of speech technology in both industry and academia.  In 

an effort to make it possible to share more data, what is proposed 

here is to utilize the extensive research in data privacy on 

structured data (see section 1.1, Background and Related Work) 

and apply that to relatively unstructured speech corpora in order 

to minimize the disclosure risk of the recorded individuals when 

sharing that data.  The final outcome is a scientific workflow [18] 

that can enable maximum data sharing and at the same time 

minimizes the disclosure risk of the individuals represented in that 

data. 

1.1 Background and Related Work 

1.1.1 Data Privacy and k-Anonymity 
The idea of k-anonymity is a concept applied traditionally to 

structured data.  A table satisfies k-anonymity if each sequence of 

quasi-identifiers (the set of attributes that do not directly identify 

an individual, but used in conjunction with other data sources may 

lead to disclosure of an individual) appears with at least k 

occurrences in the table [27, 30].  This makes each record 

indistinguishable from at least k - 1 other records.  If the data does 

not meet this k-anonymous requirement, then it is at risk for re-

identification through quasi-identifiers.  For example, Table 1 

shows a list of raw data that has not been k-anonymized.  This is 

referred to as raw microdata.  To make this table k-anonymous, it 

is necessary to generalize the quasi-identifiers so that each 

sequence of the quasi-identifiers appears with at least k 



occurrences.  Each matching group of k occurrences is referred to 

as an equivalence class.   
 

Table 1 - Raw Microdata 

Row Name Age Sex Zipcode Disease 

1 Scot 5 M 12000 heart disease 

2 Marius 9 M 14000 flu 

3 Dan 6 M 18000 heart disease 

4 Kevin 8 M 19000 flu 

5 Richard 12 M 22000 pneumonia 

6 Wayne 19 M 24000 pneumonia 

7 Kate 21 F 58000 flu 

8 Jay 26 F 36000 gastritis 

9 Jeff 28 F 37000 pneumonia 

10 Liz 56 F 33000 flu 
 

Table 2 - k-Anonymized Data 

Row Age Sex Zipcode Disease 

1 [1,10] M [10001,15000] heart disease 

2 [1,10] M [10001,15000] flu 

3 [1,10] M [15001,20000] heart disease 

4 [1,10] M [15001,20000] flu 

5 [11,20] M [20001,25000] pneumonia 

6 [11,20] M [20001,25000] pneumonia 

7 [21,60] F [30000,60000] flu 

8 [21,60] F [30000,60000] gastritis 

9 [21,60] F [30000,60000] pneumonia 

10 [21,60] F [30000,60000] flu 
 

Table 2 shows an example of data that has been 2-anonymized 

and the explicit identifiers (in this case, Name) have been 

removed.  Notice that the sensitive data (in this case, Disease) has 

not been altered.  Only the quasi-identifiers have been 

generalized.  This protects the privacy of each individual in the 

table and yet preserves data that can be used for various forms of 

data mining. 

In this work, the concepts of k-anonymity are applied to recorded 

speech, which is much less structured than the tabular data 

normally associated with k-anonymity applications.  The same 

extensions and concerns that apply to k-anonymity with structured 

data also can apply with unstructured audio data.  Anyone wishing 

to apply the concepts of k-anonymity to recorded speech should 

be familiar with these concepts and take the appropriate 

precautions.  These extensions and concerns include: attacks 

against k-anonymity [30, 19], l-diversity [19], p-sensitive k-

anonymity [32], t-closeness [17], (α, k)-anonymity [34], k-

anonymity with unstructured data [23], multirelational k-

anonymity [8], etc. 

1.1.2 Speech Technology 
This paper is related to three distinct areas of speech technology:  

1. Automated Speech Recognition (ASR) 

2. Natural Language Understanding (NLU) 

3. Emotion Detection 

ASR and NLU are both important elements for this work.  They 

are necessary for transcribing and classifying audio recordings.  

Emotion Detection is one possible consumer of this work.  These 

three areas of speech technology are briefly discussed in the 

following sections. 

1.1.2.1 Automated Speech Recognition 
Automated speech recognition enables the transcription of 

recorded telephone conversations.  These transcriptions are the 

raw microdata in this application of data privacy.  There are a 

variety of commercial and open-source toolkits available for 

automated speech recognition.  Several major universities focus 

entire programs on the research and development of these tools 

[10, 11, 3] and this work has quickly found its way into 

commercial development by such notable firms as Microsoft and 

Nuance.  This work is heavily utilized (but not extended) in this 

paper.  For this work, the Sphinx recognizer from Carnegie 

Mellon University is used as a way to measure the success of 

distortion techniques. 

1.1.2.2 Natural Language Understanding 
Natural language understanding focuses on the ability of an 

automated system to not only recognize the words that are said, 

but also the meaning of what was said.  The CU Communicator 

Corpus that was obtained for this work [33] was developed with 

the use of an NLU system to classify each utterance in the corpus.  

NLU is an area of research that has been ongoing for decades.  

This technology applies semantic classification trees to obtain one 

or more classifications for a speech utterance [13].  These 

classifications are used by speech applications to help understand 

the meaning of what a user says in order to help guide the 

interactive dialog between the speech application and the end 

user.  In this paper, these classifications are used to identify quasi-

identifiers that need to be generalized or distorted. 

1.1.2.3 Emotion Detection 
One of the motivators behind this work is the ability to preserve 

prosodic information for use in emotion detection systems.  

Emotion detection systems employ a number of different 

techniques including analyzing words, facial expressions, and the 

augmented prosodic domain [6]. The prosodic features of most 

interest to emotion detection are pitch and energy.  If these 

prosodic features can be preserved, then it may be possible to 

distort the audio and at the same time preserve some of the 

features necessary for training emotion detection systems.  

Measuring pitch and energy are important signal processing 

concepts in this work. 

1.1.3 Audio Distortion 
This paper applies an experimental distortion technique tailored 

toward minimizing prosody loss (which represents the 

information loss for audio files) and maximizing content loss 

(which lead to disclosure risk minimization).  Research in 

techniques for audio distortion includes several other distortion 

algorithms which may also be appropriate for this work.  These 

include sample permutation, block permutation, frequency 

inversion, and a combination of block permutation and frequency 

inversion [12].  Sample and block permutation both use uniformly 

distributed permutations to shuffle samples or blocks of samples 

in order to scramble an audio segment.  Frequency inversion 



inverts the sign of every other sample.  Integrating algorithms 

such as these with the workflows developed as part of this paper is 

a suggested area of further study. 

One other distortion algorithm is pitch shifting [2]; however, pitch 

shifting algorithms are designed to incur a high loss of prosody 

and preserve content.  This opposes the goals of this work and is 

therefore not appropriate in this case.  Pitch shifting may, 

however, be useful if further study is done in the area of speaker 

identification. 

1.2 Contributions 
What is proposed in this paper are two scientific workflows 

designed to protect the privacy of individuals within speech 

corpora while enforcing the following rules: 

1. Reduce Disclosure Risk under a specific threshold 

2. Minimize or Measure Information Loss 

The first workflow is designed to apply well-known k-anonymity 

techniques to a speech corpus.  This is done with the usual goal of 

achieving k-anonymity property (without any background 

information, the probability of correct disclosure for an individual 

will be no more than 1/k) while reducing information loss.  The 

second workflow is designed to distort the quasi-identifiers in the 

recorded audio of a speech corpus.  Use of distortion, rather than 

suppression, is a unique approach designed to preserve the 

prosodic features in the recorded audio.  This workflow is 

designed to minimize loss of prosody (information loss in this 

case) and distort the quasi-identifiers in the recorded audio up to a 

predefined threshold thus reducing the risk of disclosure. 

Achievement of these goals will result in enabling those who 

possess valuable speech corpora to be able to more freely share 

these corpora with other researchers.   

The paper is structured as follows. Section 2 describes our general 

approaches for both transcription generalization and audio 

distortion. Section 3 presents both scientific workflows and the 

performed experiments. Conclusions and future research 

directions are outlined in Section 4. 

2. GENERAL APPROACH 
The workflows proposed in this paper assume the existence of a 

speech corpus that contains the following: 

• Audio Recordings 

• Metadata – This includes transcriptions of the audio 

recordings and classification labels that identify the audio 

recordings that hold quasi-identifiers.  The transcriptions and 

classifications can be obtained in a variety of ways.  Many 

corpora obtain these through an approach of automation with 

human verification in order to ensure accuracy.  

2.1 Corpus Metadata Generalization 
A method for achieving k-anonymity or a more enhanced privacy 

model (several models were listed in section 1.1.1) will be used to 

properly generalize the metadata in the corpus.  This is referred to 

as the generalization algorithm.  Various algorithms that achieve 

k-anonymity property (or an enhanced model) while trying to 

minimize an information loss exist [15, 16, 1, 31, etc.].  This 

paper does not mandate any one privacy model and a specific 

algorithm although k-anonymity and the greedy clustering 

algorithm introduced by Byun, Kamra, Bertino, and Li [1] were 

selected for empirical study. 

The metadata in speech corpora come in a variety of forms.  The 

designer of the corpus decides how the metadata will be 

represented.  If the k-anonymity method is not able to take the 

format of the metadata as input, then some conversion of that 

metadata is obviously necessary. 

Once the corpus metadata is prepared for input to the 

generalization algorithm, then the algorithm is executed to 

generalize the values of the quasi-identifiers.  Some post-

processing may be necessary to incorporate the generalized values 

back into the metadata.  The list of quasi-identifiers is also 

retained for use in audio distortion as shown in the next section. 

The generalization algorithm should report the amount of 

information lost.  This provides consumers of the generalized 

corpus information about the quality of the corpus content. There 

are various information loss measures proposed in the literature 

[20, 9, 35, etc.]. While any of them can be used in our workflow, 

we use the one presented in [1]. 

2.2 Iterative Distortion 
Distortion (random noise [22], etc.) and suppression [30] are two 

techniques that are used in data privacy research probably to a 

lesser extent than generalization.  However, both of these 

techniques or a combination of them is a good choice when it 

comes to the audio portion of a speech corpus.  A speech corpus 

is usually distributed as a combination of audio data and 

associated metadata that can be linked to the audio files.  Because 

generalized values for quasi-identifiers are retained in the 

metadata, there is no need to perform the same generalizations in 

the audio recordings.  If the generalized data is needed, one can 

simply refer to the metadata.  The aim in protecting privacy in the 

audio portion of the corpus is making the quasi-identifiers that 

appear in the audio difficult to recognize (reducing disclosure 

risk) while minimizing loss of prosody (information loss).  The 

steps to achieve this are described in the following sections. 

2.2.1 Prepare Time-Aligned Word Boundaries 
The quasi-identifiers that were generalized in the corpus metadata 

must be identified in the audio recordings.  Within each audio 

recording, each quasi-identifier must be identified along with its 

time-aligned word boundary.   

A time-aligned word boundary provides the text of the word that 

was spoken along with time markers that mark the beginning and 

ending time of the word spoken.  These time markers measure the 

amount of time from the beginning of the recording.  Each audio 

file must have time-aligned word boundary prepared for it.  This 

provides the information needed to distort each generalized quasi-

identifier.  Figure 1 illustrates a time-aligned word boundary. 

 

 

Figure 1 – Example Time-Aligned Word Boundary 

Start             End             Text 

1.6315944   2.1368176   Raleigh 

6.6751760   7.4312807   Chicago 



2.2.2 Distort Quasi-Identifiers 
Distortion of the quasi-identifiers must be done in such a way as 

to 1) thwart the ability of a recognizer to identify the spoken 

words, and yet 2) still preserve as much prosodic information as 

possible.  Although popular speech encryption techniques satisfy 

the first goal, they are not designed to preserve prosody.  This 

paper describes a new distortion technique that is designed to 

preserve prosody. 

De-identifying the audio signal focuses on a combination of 

controlled randomization of digital samples combined with 

iterative amounts of suppression necessary to thwart the use of an 

automated speech recognizer.  In the first step, controlled 

randomization, the samples are randomized within an acceptable 

range.  To illustrate, assume that Figure 2 is the waveform of a 

signal that to distort. 

 
 

Figure 2 - Simple Sine Wave Tone 

 

Of course this is a simple sine wave.  A typical speech signal is a 

much more complex waveform.  However, this sine wave is useful 

for illustrating this distortion technique and the same technique 

can be used with more complex waveforms.  As discussed earlier, 

a waveform is represented in the computer by a series of samples 

as illustrated in Figure 3. 

 

 
 

Figure 3 - Digital Samples of Sine Wave 

 

Controlled randomization begins by defining an acceptable range 

within which to allow randomization of the signal samples.  For 

example, the solid curve in the Figure 4 illustrates this range. 

 

 
 

Figure 4 - Defining the randomization range 

 

Next, each sample is randomized between zero and the defined 

range for that sample.  For example, if the original sample is -50 

and the randomization range is 1.5 times the sample, then the new 

distorted sample is a random number between 0 and -75.  This is 

illustrated in Figure 5. 
 

 
 

Figure 5 - Assigning random values to each sample 

 

This results in a set of randomized samples that preserve the 

general shape of the waveform but yet add a good deal of noise 

and distortion to the audio signal.  If the curve that defines the 

acceptable range is removed, the distortion, as well as the 

preservation of some signal characteristics, becomes more 

obvious as shown in Figure 6. 

 

 
 

Figure 6 - Randomized Samples 

 

Unfortunately, this controlled distortion technique preserves a 

good deal of the fundamental audio characteristics necessary to 

distinguish speech content.  This is mainly due to the fact that 

samples that are closer to the silence axis have a smaller range for 

movement when they are randomized, thus preserving much of the 

lower-level signal content.  In order to eliminate this problem, the 

lower level signals are suppressed (Figure 7).  This is referred to 

as suppression. 

 

 
 

Figure 7 - Lower Level Samples Suppressed 



The use of controlled randomization plus suppression results in a 

set of randomized samples that preserves some basic signal 

characteristics of the original audio, but yet is distorted enough to 

obscure any recognizable speech and thus minimize disclosure 

risk in the actual audio recording.  The trick here is to define the 

optimal silence range around the axis to suppress.  When a silence 

range has been selected, the function d(a,s) will distort the audio 

segment a using a silence range of s using the techniques 

described so far in this section. 

Based on experiments performed, there appears to be no single 

silence range that is suitable to obscure all varieties of speech.  

The proper silence range is highly dependent on the pitch and 

energy of the speaker’s voice at the time of the utterance that is 

being distorted.  This is because varying frequencies and 

amplitudes (in the same speaker as well as between speakers) can 

increase or decrease the slope of the audio signal around the 

silence axis.  This has a direct affect on the size of the range made 

available for randomization in this algorithm.  Therefore, an 

iterative approach is necessary to identify the optimal silence 

range necessary to thwart the ability of a speech recognizer to 

identify the word(s) being spoken.  This iterative distortion 

algorithm is defined in Figure 8. 

In the distortion algorithm, a speech recognizer is used to generate 

a hypothesis for the utterance that has been distorted using w(a) 

(line 10). The hypothesis is scored by comparing it with the 

transcription of the original audio in order to obtain the word 

error rate (WER) [21]. Since in our algorithm there are no 

inserted or deleted words, the WER for an utterance is the number 

of incorrectly identified words over the total number of words. 

For example, consider the following two transcriptions: 

 

Original:     “I WANNA GO TO CHICAGO ON DECEMBER 

FIFTEENTH LEAVING IN THE MORNING” 

Hypothesis: “I WANNA GO TO ******* ** THE      

FIFTEENTH LEAVING IN THE MORNING” 

 

The original phrase contains 12 words.  The hypothesis from the 

recognizer was incorrect on 3 of those words. (Distortion can 

sometimes disturb surrounding words due to inaccurate word 

boundaries and the nuances of statistical language models.)  It had 

no hypothesis for the words CHICAGO and ON (indicated by 

asterisks) and an incorrect hypothesis THE for the word 

DECEMBER.  The WER in this case is 3/12, or 25%.  

Once the WER of the distorted audio is greater than the WER of 

the original audio, the audio has been altered enough to cause 

confusion in the recognizer to the point that it can no longer 

understand the phrase that was distorted.  That completes the 

iteration at which point the required level of distortion bas been 

achieved.  The distorted audio is retained and total prosody loss is 

output (line 18). 

The accuracy of the speech recognizer must be optimized in order 

to obtain good recognition results.  By training the speech 

recognizer on the entire set of utterances to be distorted, a 

heightened level of accuracy can be achieved.  Normally, 

recognizers are trained on a training set that is assembled to best 

represent what the recognizer should expect during decoding.  

However, in this case, it is known in advance exactly what the 

recognizer will need to understand.  (This assumes of course that 

complete transcriptions of the utterances are available.)   

Definitions: 

d(a,s): distort audio a with silence range of s and return the 

distorted utterance 

s(a): suppress audio a (i.e. replace with complete silence) 

w(a): decode (i.e. recognize) the audio a and return the word error 

rate (WER) 

p_rmsd(a,b): Compute the Root Mean Square Deviation (RMSD) 

between the pitch of a and the pitch of b 

e_rmsd(a,b): Compute the RMSD between the energy of a and the 

energy of b 

 

Distortion Algorithm: 

1. Train the speech recognizer on the entire set of utterances to 

be distorted 

2. For each utterance au to be distorted 

3. s = 0        // Initial silence range of 0 

4. ed = 0     // Cumulative rmsd for distorted energy  

5. pd = 0     // Cumulative rmsd for distorted pitch 

6. es = 0     // Cumulative rmsd for suppressed energy  

7. ps,= 0     // Cumulative rmsd for suppressed pitch 

8. weru = w(au) // Obtain undistorted word error rate (WER) 

9. ad = d(au,s) // Create distorted audio file 

10. while w(ad) ≤ weru  

11.     s = s + k // Increment silence range by constant k 

12.     ad = d(au,s) // Create distorted audio  

13.     as = s(au) // Create suppressed audio  

14.     pd = pd + p_rmsd(au, ad)    

15.     ps = ps + p_rmsd(as, ad)   

16.     ed = ed + e_rmsd(au, ad)   

17.     es = es + e_rmsd(as, ad)   

18. Output pd, ed, ps, es // Quantify total prosody loss 
 

Figure 8 - Distortion Algorithm 

2.2.3 Minimize Disclosure Risk 
Risk of disclosure is minimized by measuring the capability of an 

automated recognizer to discern what was said in the distorted 

audio.  (Human recognition is an area of further study.)  This is 

done in line 10 of the distortion algorithm presented in Figure 8.  

Here, the recognition performed on the distorted audio, w(ad), 

returns a WER which is compared against the WER from the 

undistorted audio, weru.  Because the audio being distorted is 

limited to only the words identified in the time-aligned word 

boundary, we know that increases in the WER are a result of the 

recognizer’s inability to discern the targeted audio. 

2.2.4 Measure Pitch and Energy 
To measure the information lost by the distortion algorithm in 

terms of prosody, it is necessary to measure the energy and pitch 

characteristics of the suppressed and distorted audio samples.  

These measurements are taken in lines 14 through 17 of the 

algorithm (see Figure 8). 

Energy is represented by the amplitude of the speech signal and is 

perceived as the volume in decibels.  Since each sample has an 

individual amplitude, energy of an interval of speech can be 

measured with the root mean square (RMS) of all the samples 

within that interval. 

Pitch contour is measured as a vector of values where each value 

is the average pitch for a speech segment.  The ability to measure 

changes in pitch is somewhat complex, but measured over time 



can add value in understanding more about what is being said.  

For example, an upward direction in pitch at the end of an English 

sentence usually indicates that a question is being asked.  Changes 

in pitch are also very useful in detecting the emotions being 

expressed by the speaker.  The acoustic characteristic that is most 

closely associated with pitch is the fundamental frequency of the 

sound wave which, in speech, is determined by the frequency of 

vibration of the vocal cords [7].  There are many techniques for 

estimating the pitch of a speech segment given a waveform [25].  

One popular method to estimate the pitch of a speech segment of 

size N is the average magnitude difference function (AMDF) [26] 

and is defined as: 
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where   is close to the size of the fundamental period and s(n) is 

the value of the nth sample within segment N.  In speech, the 

fundamental period can be defined as the time between the 

opening and closing of the glottis.  There are many algorithms for 

estimating the fundamental period that go beyond the scope of 

this work. 

2.2.5 Measure Prosody Loss 
While generalizing the corpus metadata, information loss is 

measured in terms of the amount of generalization that takes 

place.  For the distorted audio, the concern is the preservation of 

prosodic information or the measurement of prosody loss.  This is 

accomplished by comparing vectors of prosodic information from 

the original audio with prosodic vectors of the distorted audio.  A 

Root Mean Square Deviation algorithm (see equation 2) is 

employed to calculate the distance between these vectors.   
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This formula has two instantiations, for pitch contour and energy 

(labeled p_rmsd and e_rmsd in Figure 8).  

3. EMPIRICAL STUDY 
Experiments were conducted on a PC configured with a Linux 

2.6.19 kernel and 768 MB of memory, and 40 GB of disk space.  

The corpus used is the CU Communicator Corpus [33] which 

contains recordings and metadata for an automated speech travel 

reservation system.  

The experiments were broken into two phases: 

1. Corpus Metadata Generalization 

2. Audio Distortion 

The details of these experiments are described next. 

3.1 Corpus Metadata Generalization 
A Byun Clustering software implementation described in [1] was 

used for these experiments. The first challenge was to take the 

data provided by the CU Communicator corpus and transform it 

into a format usable as input by the Byun Clustering software.  

The software requires a simple text input file of tab-delimited 

data.   

The CU Communicator corpus consists of recordings that have 

been previously transcribed, segmented, and classified.  Each 

recording is an individual segment of an interaction between a 

caller and the automated CU Communicator system.  The CU 

Communicator system is a travel reservation system that captures, 

among other things, arrival and departure cities.  The 

transcriptions and classifications are provided in XML format 

along with a very large amount of other data that is not needed for 

these experiments.   

The challenge here is to convert the data in this XML into a more 

structured format that can be easily used by the Byun Clustering 

software as described above. An XSL transformation (XSLT) 

stylesheet was used to select the data of interest and a relational 

database was created from that data.  This database was populated 

with 31,790 transcriptions.  Arrival and departure cities were 

selected as the quasi-identifiers.   

Natural Language Understanding (NLU) classifications from the 

corpus were used to identify the quasi-identifiers.  To generalize 

arrival and departure cities, a generalization hierarchy was created 

with four levels as depicted in Figure 9. 

 

 

 

 

 

 

 

 

 

Figure 9 - City Generalization Hierarchy 

 

The Byun Clustering software was then run with k=3 to generalize 

the quasi-identifiers for each transcription.  The positions of the 

generalized quasi-identifiers were located within each audio file 

and a .lab file was created to record each of those positions.  

These .lab files were used as input to the audio distortion phase 

described in the next section.  The entire workflow for 

generalizing the corpus metadata is depicted in Figure 10. 

In the case of our experiments, the generalization hierarchy 

illustrated in Figure 9 is the data source labeled “Generalization 

Hierarchies” in Figure 10.  This hierarchy is used in the Byun 

Clustering Generalization. 

Generalization resulted in an average information loss of 0.25 per 

quasi-identifier.  Information loss during generalization is 

calculated as follows: If n is the number of levels in the 

generalization hierarchy and lqi is the level that the QI was 

generalized to, then information loss for that quasi-identifier is 

calculated as specified in equation 3. 

ILqi = lqi/n | 0 ≤ l ≤ n      (3) 

For example, in Figure 9, if DOVER is generalized to USA, then 

lqi is 2 (USA) and n is 3 (three possible generalization levels in the 

hierarchy) resulting in an information loss of 2/3.  If DOVER 

were to remain unchanged, then lqi would be 0 resulting in an 

information loss of 0.   

COUNTRY

FRANCEUSAITALY

MIMDMA

BALTIMORE DOVER

...

...

... ...



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10 - Generalization Workflow 

The total calculations for information loss are based on the 

information loss for each quasi-identifier. Table 3 illustrates an 

example of the information loss calculations for all quasi-

identifiers where the departure city was “DENVER”.   

Table 3 - Example Information Loss Calculation 

Original 

Value 

Generalized 

Value 

Number of 

Occurrences 

IL Per 

Occurrence 

Total 

IL 

DENVER DENVER 595 0.00 0.00 

DENVER CO 5 0.33 1.65 

DENVER USA 119 0.66 78.54 

DENVER COUNTRY 45 1.00 45.00 

Totals  764  125.19 
     

Avg.IL/QI = 125.19/764 = 0.16 

 

For this subset of data, the average information loss (IL) per 

quasi-identifier (QI) is 0.16.  Since the number of occurrences of 

DENVER as a departure city in this corpus is quite high, it makes 

sense that less generalization was required for this subset than for 

the overall corpus because less generalization would be required 

in order to achieve k-anonymity. A complete description of 

information loss measure can be found in [1, 31]. 

The generalization performed thus far has been applied only to the 

transcriptions accompanying the recorded audio in the corpus.  

Our next step is to apply a similar level of protection to the 

associated recorded data through distortion. 

3.2 Audio Distortion 
Audio file distortion was accomplished using custom-developed 

software integrated with well-known open-source components 

including: 

• WaveSurfer 1.8.5  [29]  

• sph2pipe 2.5 [14] 

• MySQL 4.1.20 

• CMU-Cambridge Statistical Language Modeling Toolkit v2 

[5] 

• Sphinx 3.7.0 Decoder [3] 

• SphinxTrain 1.0 Training Kit [3] 

• Sphinx Knowledge Base Tool [4]  

• NIST Speech Recognition Scoring Toolkit (SCTK) 2.2.4 

(sclite scoring tool) [24] 

• get_f0 program used to calculate RMSD for both pitch 

contour and energy.  [29] 

The custom software components developed for this workflow 

included: 

• distort – a C language program used to implement the 

distortion technique discussed in section 2.2.2 

• rmsd – a C language program that implements the RMSD 

algorithm 

• distort_test.sh – a UNIX shell script that implements the 

iterative workflow described in this section 

• comparef0 – a UNIX shell script that utilizes the get_f0 

program to compare the prosody and energy vectors of two 

different audio files 

These custom components, as well as links to the referenced 3rd 

party components, are available as links from the website for this 

project at http://cscdb.nku.edu/privrec. 

The iterative workflow (implemented in distort_test.sh) was able 

to successfully distort the audio so that a recognizer (Sphinx) 

could no longer perform accurate recognition.  In addition, many 

of the original prosodic features were preserved.  This iterative 

distortion workflow is illustrated in Figure 11. 

For these tests, the Sphinx recognizer was trained on the audio 

and transcriptions that were to be distorted.  The detailed steps 

required to set up the recognizer are described in [3].  Normally, a 

training set consists of recorded audio and associated 

transcriptions that are representative of the audio that the 

recognizer can expect.  For this testing, the content of all audio 

that will be presented to the recognizer is known in advance.  This 

provides the recognizer with highly accurate training data that 

should result in very accurate recognition rates necessary for this 

processing.  
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Figure 11 - Iterative Distortion Workflow 
 

The distort program uses time-aligned word boundaries from the 

.lab files to identify the position of each word to be distorted.  

The distort program first distorts the original audio using an 

initial silence range.  The distorted audio is then run through the 

Sphinx Decoder and the word error rate (WER) is calculated.  If 

the WER has not exceeded the WER from original audio, the 

silence range is increased and the process is repeated. 

The distorted audio is also run through the comparef0 script to 

measure and compare pitch and energy vectors of the distorted 

audio with the original audio in order to measure prosody loss.  

RMSD is used to compare the distorted audio and the original 

audio and calculate the total prosody loss for both pitch and 

energy.  This is compared with the total prosody loss 

measurements from suppression in order to determine the 

amount of improvement gained by the controlled distortion 

algorithm. 

The resulting distorted audio was compared with audio in which 

the quasi-identifiers had been completely suppressed with 

silence.  When compared with suppression, controlled distortion 

showed a 47.5% improvement in prosody loss and a 75% 

improvement in energy loss.   
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Figure 12 - Silence Ranges 

The silence ranges necessary to minimize disclosure risk varied 

across the test set of utterances (see Figure 12). About half the 

utterances achieved the necessary amount of distortion with the 

initial range of 1000.  So, for example, a 16-bit sample with a 

value of 999 would be silenced.  A sample with a value of 1000 

would be left alone.  The other half of the utterances required 

anywhere from 1500 to 6000 for a silence range. 

4. CONCLUSIONS AND FUTURE WORK 
For purposes of research and development of speech technology, 

as well as for the improvement of existing speech systems, it is 

often necessary to share corpora among various business and 

academic entities.  However, minimizing disclosure risk in these 

recordings and any associated transcriptions is an important 

consideration.  These conflicting goals often hinder progress in 

the area of speech technology.  Common approaches to this 

problem include complete suppression of the sensitive portions 

of the audio.  This is a time consuming effort and can result in 

significant loss of prosody.  Preserving prosody can be very 

useful for purposes such as gender identification, age 

identification, and emotion detection. 

The purpose of this research was to integrate work that has been 

done in the area of data privacy with speech recognition and 

distortion to develop scientific workflows for protecting privacy 

in recorded conversations with minimal loss to data content and 

prosodic features in the audio.  Minimizing disclosure risk is the 

most important goal with the second being to minimize/measure 

information and prosody loss.  This enables the comparison of 

different techniques for generalization and distortion. 

The CU Communicator Corpus was used for testing.  This 

corpus contained speech recordings that had already been 

transcribed and classified.  The classifications were used to 

identify transcriptions that contained quasi-identifiers and 

separate out those quasi-identifiers into tabular fields in a 

relational database.  A data privacy algorithm (Byun Clustering) 

was run against the quasi-identifiers to generalize them.  On 

average, each quasi-identifier was moved less than one step up 
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the generalization hierarchy.  These generalized quasi-identifiers 

were then used as input to a process that identified words within 

the transcriptions that needed to be distorted in order to protect 

the audio content associated with that transcription. 

The distortion workflow was developed that took the output of 

the generalization phase and proceeded to apply iterative levels 

of distortion to the quasi-identifiers in the associated audio.  The 

intent of this distortion was to thwart the ability of an automated 

speech recognition system (in this case, Sphinx) to successfully 

decode the quasi-identifiers.  By iteratively increasing distortion 

and suppression, the minimal amount of distortion was applied 

to increase the word error rate (WER) that signified that the 

recognizer was no longer able to recognize the audio segment.  

Loss of prosody in the audio was measured using an RMSD 

algorithm to compare the prosodic vectors of the distorted audio 

with those of the original audio.  This was compared to the loss 

resulting from completely suppressing quasi-identifiers in the 

audio.  Results indicated improvements of as much as 75% over 

suppression. 

The manner in which this workflow was developed enables the 

integration of any form of data privacy or audio distortion.  This 

helps open up the door to other avenues of further research.  

Applying this research to various corpora and data privacy 

alternatives would be a productive area of study, especially for 

those who have access to corpora that contain actual sensitive 

information (most publicly and commercially available corpora 

do not). 

For this work, a custom distortion technique was developed 

aimed at preserving prosodic features.  This distortion technique 

combined controlled randomization with a user-specified level 

of suppression of lower-level audio samples.  By iteratively 

increasing the amount of suppression, the workflow found an 

optimal level of suppression needed to increase the WER.  

Alternative distortion techniques should be studied to ascertain 

their effectiveness on preserving prosody and thwarting 

recognition, be it automated recognition or human intelligibility.  

As was the case with this work, it is expected that thwarting 

intelligibility and preserving data will be conflicting goals that 

will need to be balanced. 

High quality automated recognition is important to the ability of 

these algorithms and data flows to perform well.  Further 

research could be done in this area to better tune automated 

recognizers and perhaps experiment with several different 

recognition engines to achieve optimal performance.  Iteratively 

tuning the recognizer with audio that has already been distorted 

may also improve results. 

Using a combination of third party speech recognition systems, 

various k-anonymity generalization algorithms, custom 

distortion software, and off-the-shelf hardware, experiments 

were conducted that accurately identified the data that should 

not be shared, generalized the corpus transcriptions, and 

distorted the associated audio segments while measuring loss of 

transcribed data as well as loss of the prosodic features in the 

audio. 

Although there are still some challenges remaining, a scientific 

workflow was successfully developed for approaching this 

speech privacy problem.  Further research can be performed to 

refine the presented techniques.  The goal is that this will enable 

more corpora and higher quality corpora to be shared and made 

readily available to researchers and developers in the field of 

speech technology while minimizing disclosure risk and 

information (prosody) loss. 

Finally, an area that was briefly mentioned, speaker 

identification, is worth further study.  The speaker’s voiceprint 

can be considered an identifier that needs to be addressed. 

 

Acknowledgments 

The work presented herein was completed by Scot Cunningham 

while he was a graduate student in the Department of Computer 

Science at Northern Kentucky University (NKU), Highland 

Heights, USA. The authors would like to thank Kevin Kirby and 

Richard Fox for their suggestions.  The authors would also like 

to thank the Center for Spoken Language Research (CSLR) at 

the University of Colorado for making the CU Communicator 

Corpus [33] available to NKU for this research effort.  The CU 

Communicator Corpus was a valuable asset to this work. 

5. REFERENCES 
[1] Byun J.W.; Kamra A.; Bertino E.;  Li N.: “Efficient k-

Anonymization using Clustering Techniques”. Proc. of 

DASFAA, 2007, 188–200. 

[2] Chaudhari, J.; Cheung, S.; Venkatesh, M.: “Privacy 

Protection for Life-log Video”. IEEE Workshop on Signal 

Processing Applications for Public Security and Forensics, 

April 2007, 1–5. 

[3] CMU: Sphinx Group Open Source Speech Recognition 

Engines, 

http://cmusphinx.sourceforge.net/html/cmusphinx.php. 

[4] CMU: Sphinx Knowledge Base Tool, 

http://www.speech.cs.cmu.edu/tools/lmtool.html. 

[5] CMU: Statistical Modeling Toolkit, 

http://www.speech.cs.cmu.edu/SLM_info.html. 

[6] Cowie, R.; Douglas-Cowie, E.: Tsapatsoulis, N.; Votsis, 

G.; Kollias, S.; Fellenz, W.; Taylor, J.G.: "Emotion 

Recognition in Human-Computer Interaction". IEEE Signal 

Processing Magazine, Vol.18, No.1, 2001, 32–80. 

[7] Denes P.B.; Pinson E.N.: “The Speech Chain: The Physics 

and Biology of Spoken Language”. W.H. Freeman and 

Company, ISBN 0-7167-2344-1, 2007. 

[8] Ercan Nergiz M.; Clifton C.; Erhan Nergiz A.: 

“MultiRelational k-Anonymity”. Proc. of IEEE ICDE, 

2007, 1417–1421. 

[9] Ghinita G.; Karras K.; Kalinis P.; Mamoulis N.: “Fast Data 

Anonymization with Low Information Loss”. Proc. of 

VLDB, 2007, 758–769. 

[10] Hain T.: “Automatic Transcription of Conversational 

Telephone Speech”.  Cambridge University Engineering 

Department Technical Report,  December, 2003. 

[11] HTK: Cambridge University Engineering Department, 

2006, http://htk.eng.cam.ac.uk/. 

[12] Jayant, N.; McDermott, B.; Christensen, S.; Quinn, A.: “A 

Comparison of Four Methods for Analog Speech Privacy”. 

IEEE Transactions on Communications, Vol. 29, No. 1, 

1981, 18 – 23. 



[13] Kuhn R.: “The Application of Semantic Classification 

Trees to Natural Language Understanding”. IEEE 

Transaction on Pattern Analysis and Machine, Vol. 17, 

No. 5, 1995. 

[14] LDC: sph2pipe: ftp://ftp.ldc.upenn.edu/pub/ldc/misc_sw/ 

sph2pipe_v2.5.tar.gz. 

[15] LeFevre K.; DeWitt D.; Ramakrishnan R.: “Incognito: 

Efficient Full-Domain k-Anonymity”. Proc. of the ACM 

SIGMOD, Baltimore, Maryland, 2005, 49–60. 

[16] LeFevre K.; DeWitt D.; Ramakrishnan R.; Mondrian: 

“Multidimensional k-Anonymity”. Proc. of the IEEE 

ICDE, Atlanta, 2006. 

[17] Li N.; Li T.; Venkatasubramanian S.: “t-Closeness: Privacy 

Beyond k-Anonymity and l-Diversity”. Proc. of the IEEE 

ICDE, 2007, 106–115. 

[18] Ludscher B.; Altintas I.; Berkley C.; Higgins D.; Jaeger E.; 

Jones M.; Lee E.; Tao J.; Zhao Y.: “Scientific Workflow 

Management and the Kepler System”. Concurrency and 

Computation: Practice & Experience, 2005. 

[19] Machanavajjhala A.; Gehrke J.; Kifer D., 

Venkitasubramaniam M.: “l-Diversity: Privacy Beyond k-

Anonymity”.  Proc. of the IEEE ICDE, Atlanta, 2006, 24. 

[20] Mateo-Sanz J.M.; Domingo-Ferrer J.; Sebe F.: 

“Probabilistic Information Loss Measures in 

Confidentiality Protection of Continuous Microdata”. Data 

Mining and Knowledge Discovery, Vol. 11, No. 2, 2005, 

181–193. 

[21] McCowan I.; Moore D.; Dines J.; Gatica-Perez D.; Flynn 

M.; Wellner P.; Bourlard H.: “On the Use of Information 

Retrieval Measures for Speech Recognition Evaluation”. 

Technical Report IDIAP-RR 04-73, Martigny, Switzerland, 

2004. 

[22] Muralidhar K.; Sarathy R.: “Security of Random Data 

Perturbation Methods”. ACM Transactions on Database 

Systems, Vol. 24, No. 4, 1999, 487–493. 

[23] Newton E.; Sweeney L.; Malin B.: “Preserving Privacy by 

De-identifying Facial Images”. IEEE Transactions on 

Knowledge and Data Engineering, Vol. 37, No. 3, 2005, 

179-192. 

[24] NIST: NIST Spoken Language Technology Evaluation and 

Utility, http://www.nist.gov/speech/tools/index.htm. 

[25] Rabiner L.R.; Cheng M.J.; Rosenberg A.E.; McGonegal 

C.A.: “A Comparative Performance Study of Several Pitch 

Detection Algorithms”. IEEE Transactions on Acoustics, 

Speech, and Signal Processing, ASSP-24, 1976, 399–418. 

[26] Ross M.J.; Shaer H.L.; Cohen A.; Freudberg R.: “Average 

Magnitude Difference Function Pitch Extractor”. IEEE 

transactions on Acoustics, Speech, and Signal Processing, 

ASSP-22, 1974, 353–362. 

[27] Samarati P.; "Protecting respondents' identities in 

microdata release''. IEEE Transactions on Knowledge and 

Data Engineering, Vol. 13, No. 6, 2001, 1010–1027. 

[28] Sahin, F.; Bay, J.S.: "Learning from Experience Using a 

Decision-Theoretic Intelligent Agent in Multi-Agent 

Systems". Proc. of the IEEE Mountain Workshop on Soft 

Computing in Industrial Applications, 2001, 109–114. 

[29] Sjölander, K.; Beskow, J.: "WaveSurfer - An Open Source 

Speech Tool". International Conference on Spoken 

Language Processing, Beijing, China, 2000, 464–467. 

[30] Sweeney L.: “Achieving k-Anonymity Privacy Protection 

Using Generalization and Suppression”. International 

Journal on Uncertainty, Fuzziness and Knowledge-based 

Systems, Vol. 10, No. 5, 2002, 571–588. 

[31] Truta T.M.; Campan A.: “K-Anonymization Incremental 

Maintenance and Optimization Techniques”. Proc. of the 

ACM SAC, 2007, 380–387.  

[32] Truta T.M.; Vinay B.: “Privacy Protection: p-Sensitive k-

Anonymity Property”. International Workshop of Privacy 

Data Management, 2006. 

[33] Ward W.; Pellom B.: "The CU Communicator System," 

IEEE Workshop on Automatic Speech Recognition, 

Keystone Colorado, 1999. 

[34] Wong R.; Li J.; Fu A.; Wang K.: “(α, k)-Anonymity: An 

Enhanced k-Anonymity Model for Privacy Preserving Data 

Publishing”. Proc. of the ACM SIGKDD, 2006, 754–759. 

[35] Xu J.; Wang W.; Pei J.; Wang X.; Shi B.; Fu A.: “Utility-

Based Anonymization Using Local Recoding”. Proc. of 

ACM SIGKDD, 2006, 785–790. 

 

 


