
Design of PriServ, A Privacy Service for DHTs

Mohamed Jawad
LINA

Patricia Serrano Alvarado
LINA

Patrick Valduriez
INRIA and LINA

University of Nantes
{Mohamed.Jawad,Patricia.Serrano-Alvarado}@univ-nantes.fr

Patrick.Valduriez@inria.fr

ABSTRACT
By decentralizing control, P2P systems provide efficient,
scalable data sharing. However, when sharing data for dif-
ferent purposes (e.g., billing, purchase, shipping, etc.), data
privacy can be easily violated by untrustworthy peers wich
may use data for other purposes (e.g., marketing, fraud-
ulence, profiling, etc.). A basic principle of data privacy is
purpose specification which states that data providers should
be able to specify the purpose for which their data will be
collected and used. In the context of P2P systems, decen-
tralized control makes it hard to enforce purpose-based pri-
vacy. And the major problem of data disclosure is not ad-
dressed. Hippocratic databases provide mechanisms for en-
forcing purpose-based disclosure control within a corporation
datastore. In this paper, we apply the Hippocratic database
principles to P2P systems to enforce purpose-based privacy.
We focus on Distributed Hash Tables (DHTs), because they
provide strong guarantees in terms of access performance.
We propose PriServ, a privacy service which prevents pri-
vacy violation by prohibiting malicious data access. The
performance evaluation of our approach through simulation
shows that the overhead introduced by PriServ is small.

1. INTRODUCTION
Peer-to-Peer (P2P) systems provide an efficient solution for
distributed data sharing. By decentralizing control, they
can scale up to very large amounts of data and numbers
of users. P2P systems have been mainly used for file shar-
ing. Recently, the needs to support advanced applications
led to content sharing where shared data are semantically
richer than files (e.g., relational tables, XML documents,
etc.). By significantly increasing the types of shared data
and the ways to access them, content-sharing in P2P also
rises the risk of misuse. Data providers may see their data
used for marketing, illegal competition, or activities against
their preferences or ethics.

Data privacy is the right of individuals to determine for
themselves when, how and to what extent information about
them is communicated to others [11]. The main principles

underlying data privacy, according to OECD1, are: collec-
tion limitation, purpose specification, use limitation, data
quality, security safeguards, openness, individual participa-
tion, and accountability. Several solutions that follow the
OECD guidelines have been proposed. A major solution
is Hippocratic databases which can enforce purpose-based
disclosure control in a relational datastore [1, 6]. This is
achieved by using privacy metadata, i.e. privacy policies and
privacy authorizations stored in tables. A privacy policy de-
fines for each attribute, tuple or table the usage purpose(s),
the potential users and retention period while privacy au-
thorization defines which purposes each user is authorized
to use.

1.1 Motivations
In the context of P2P systems, decentralized control makes
it hard to deal with data privacy. A few solutions have been
proposed but focus on a small part of the general problem,
e.g. anonymity of uploaders/downloaders, linkability (cor-
relation between uploaders and downloaders), content deni-
ability, data encryption and authenticity [3, 5]. However,
the major problem of data disclosure is not addressed. As
a motivating example, let us consider a Master degree in
Computer Science. Several teachers may participate in the
same course. Students are evaluated and graded by each
teacher. The final grade of students is computed based on
the teachers’ grades. One of the teachers is responsible for
a course and gathers all grades. Students may ask for their
grades or their ranking, e.g. according to the final grade, to
one particular teacher, etc.

We consider a P2P system where each teacher, represented
by a peer, manages its grades locally. Teachers should be
able to specify their privacy preferences for data access. For
instance:

• a teacher may allow reading access to her colleagues
participating in the same course for particular rankings
of students or to her students for their rankings or
grades,

• the responsible of a course may allow updating access
to the teachers participating in the course but only for
adding their grades; or she may allow reading access to
the responsible of the degree for knowing the average
grade.

In this P2P application, sharing data (i.e., grades) based
on privacy preferences is a challenge. Purposes defined by
teachers, such as adding grades, ranking wrt a specific tea-

1http://www.oecd.org/.



cher, etc. should be respected. Data should not be shared
indistinctly with all users. Currently, distributing and re-
questing data in P2P systems do not take into account pri-
vacy preferences. So controlling data sharing for specific
purposes is not possible in such systems without adding new
services.

In this context, an efficient P2P purpose-based privacy ser-
vice is needed.

1.2 Contributions
In this paper, we apply the Hippocratic database principles
to P2P systems to enforce privacy. In particular, we pro-
pose to include access purposes in data distribution and data
requesting to prevent violating data privacy, and to verify
trust levels of clients to prevent sharing data with suspicious
or malicious peers.

We focus on Distributed Hash Tables (DHTs), because they
provide strong guarantees in terms of access performance.

This paper has two main contributions.

• First, we propose a privacy model for DHTs. In such
model we define data models where privacy policies are
integrated.

• Second, we propose PriServ, a privacy service which
prevents privacy violation by prohibiting malicious da-
ta access and use. For that, we use purpose-based
access control and trust notions.

The performance evaluation of our approach through sim-
ulation shows that the overhead introduced by PriServ is
reasonable.

We present our privacy model for DHTs in section 2. PriS-
erv is presented in section 3. We describe our performance
evaluation in section 4. We discuss related work in section
5 and conclude in section 6.

2. PRIVACY MODEL FOR DHT
Privacy protection can be divided into two phases: preven-
tion and verification. The prevention phase consists in pre-
venting privacy violation by prohibiting malicious data ac-
cess and use. The verification phase consists in detecting
privacy violation and taking actions against malicious users.
In this paper, we focus on the first phase.

In the next, we define the DHT model (section 2.1), privacy
policies (section 2.2) and the data model (section 2.3).

2.1 DHT Model
All DHTs support a distributed lookup protocol that effi-
ciently locates the peer that stores a particular data item.
Data location is based on associating a key with each data
item, and storing the key/data item pair at the peer to which
the key maps. A DHT maps a key k to a peer P using a
hash function h. We call P the responsible for k wrt h. The
responsible for k wrt h may be different at different times
because of peer joins and leaves.

Many DHTs have been proposed, e.g. Chord [9], Pastry [8],
etc. To generalize, DHT provides two basic operations, each
incurring O(logN) messages.

• put(k, data) stores a key k and its associated data in
the DHT using some hash function.

• get(k) retrieves the data associated with k in the DHT.

All DHTs can be used in this work. We chose Chord for its
efficiency and simplicity. In Chord, peers maintain informa-
tion about O(logN) other peers in a finger table and resolve
lookups via O(logN) messages to other peers. A finger table
entry includes both the Chord identifier and the IP address
(and port number) of the relevant peer. A consistent hash
function assigns to each peer and key an m-bit identifier
using a base hash function. A peer identifier is chosen by
hashing the peer IP address. A key identifier is based on
data values that can be a data identifier, an address, etc.
All peers are ordered in a circle modulo 2m. Key k is as-
signed to the first peer whose identifier is equal to or follows
k in the identifier space. Chord provides data distribution
and searching using only O(logN) messages.

2.2 Privacy Policies
Each data provider can have its own privacy preferences (ev-
ery teacher has her privacy preferences). These preferences
can include the users that have the right to access data,
what kind of access a user has (read/write), whether users
have the right to disclose shared data, the purpose of data
access, the minimal trust level of the user, etc. Those data
privacy preferences are reflected in privacy policies.

We consider that each data provider is responsible for defin-
ing and maintaining her privacy policies in an independent
way.

All concepts in the privacy policy model are important. We
focus on the access purpose and the trust level elements
which are poorly addressed by access control systems. The
access purpose states the data access objective. The trust
level is an assessment of the probability that a peer will not
cheat.

2.3 Data Model
In order to respect privacy policies, in particular, the notion
of purpose and trust, we define a specific data model where
privacy policies are associated with data.

We consider that each peer stores locally the data it wants
to share in relational tables which we call data tables. Data
contained in privacy policies are stored in a table named pri-
vacy policies table. Following our motivating example, Table
1 shows a data table which contains the student grades of
the course responsible Rj. Table 2 shows the privacy policies
table of the course responsible Rj. In this table, one tuple
corresponds to one privacy policy. Each policy contains an
id, data subject to privacy (table, column or tuple), access
rights (read, write, delete), allowed users, access purposes,
conditions (if they exist), and the required minimal trust
level of allowed users.

3. PRISERV
In this section, we present PriServ, a service which, based
on the data model of the previous section, prevents privacy
violation in DHT-based systems.

Section 3.1 gives our design choices, section 3.2 algorithms
to distribute and search data and section 3.3 a cost analysis
of these algorithms.

3.1 Design Choices
Although our design is general enough to be used in different
DHTs, we use Chord to illustrate how PriServ works. Our
main design choices concern the introduction of purpose into
data keys, the use of trust levels, and the definition of new
tables to deal with privacy.



Data table DTj
Student (PK) Grade1 Grade2 Exam grad Average

S1 15.0 13.0 13.0 13.66
S3 9.5 10.0 8.0 9.00

Table 1: Data table of the course responsible Rj

Privacy policies table j
ID Data Access User Purpose Condition Minimal

Table Column PK right trust level
PP1 DTj Grade1 — r/w Pi Add grades — 0.65
PP3 DTj — — r/w/d Rj Monitoring — 0.9
PP4 DTj Average r Students Ranking Average>10 0.6
PP5 DTj — S3 r S3 Grade details — 0.7

Table 2: Privacy policies table of the course responsible Rj

Private table
Privacy

Data id Purpose Key policy
DTj.Grade1 Add grades 21 PP1
DTj Monitoring 71 PP3
DTj.Average Ranking 83 PP4

Table 3: Private table of the course responsible Rj

3.1.1 Data Keys
In PriServ, like in Chord, peer identifiers are chosen by hash-
ing the peer IP address. Concerning the data key, to enforce
data privacy, we propose to hash the pair (data id, purpose).
data id is a unique data identifier and purpose is the data
access purpose. Thus, the same data with different access
purposes have different keys.

Because keys contain the notion of purposes, searching data
is always made for a defined purpose. This allows to en-
hance access control because to construct data keys, data
requesters have to include the purpose for which the data
are accessed. We assume that data requesters know the
purposes for which data are accessed.

3.1.2 Trust Levels
PriServ uses trust levels to make the final decision of sharing
or not data. The trust level reflects a peer reputation wrt
other peers. A peer can have different trust levels at different
peers.

The peer reputation influences its trust level. Peers which
are suspicious have lower trust level than peers considered as
honest. Peers can have locally the trust levels of some well
known peers or peers which have interacted with them. If a
peer does not have a particular trust level it can ask for this
to other peers. These peers are called friends. A friend is a
peer considered as honest from the peer P ’s point of view.
The number of friends can vary from one peer to another.

3.1.3 Required Tables
We consider that storing data in the system may affect data
privacy because data providers do not control the access to
their data. In PriServ, data are locally stored at the provider
peer. Only keys and the corresponding provider identifier
are distributed in the system. Thus, in PriServ peers can
play the following roles.

• Requester: peer that makes a data request.

• Responsible: peer responsible for key/provider pair.

• Provider: peer that shares data with requesters. Nor-
mally, it owns the data.

Each responsible peer maintains locally a reference table
which contains keys and corresponding provider identifiers.
Provider peers use private tables (e.g., Table 3) where keys
and privacy policies are associated. This table facilitates the
mapping of the requested keys with corresponding privacy
policies. Each provider also maintains a local trust table.
This table contains the trust value of some peers in the sys-
tem.

All these tables are locally stored at each peer in a secure
database management system.

3.2 PriServ Algorithms
The PriServ service uses two main algorithms, one for key
distribution and another for data requesting.

3.2.1 Key Distribution Algorithm
In PriServ, when a peer enters the system, it uses the put
(key, provider id) function to distribute the key/provider id
pair of the data it shares. The key is produced by hash-
ing the data identifier and the access purpose (hashFunc-
tion(data id, purpose)). The provider id is the key that
identifies the entering peer. A peer already connected to
the system can share data by using the hashFunction and
the put functions.

Unlike the traditional DHT put(key, data) function, instead
of distributing shared data (data), the data provider iden-
tifier is distributed. Thus data are not distributed in the
system to enhance data privacy. Only data providers con-
trol their data sharing.

3.2.2 Data Requesting Algorithm
When a peer requests a data item, it produces the corre-
sponding key and searches for the peer responsible for that
key in the system. The peer responsible returns the provider
identifier to the requester. The requester then addresses the
request to the provider peer. Finally, the provider verifies
its privacy policies and the trust level of the requester. If
the requester access rights are compatible with those defined
in the provider privacy preferences, the provider shares the
data with the requester.

The requesting algorithm has three main functions.

1. search(data id, purpose). The requester hashes the
data identifier and the access purpose to produce the
key. It searches for the responsible of the key in order
to get the provider identifier. This is done by using
the get() function.

2. retrieve(requester id, provider id, key). The provider
verifies locally the privacy policy of the key with the



verifyPP (requester id, key) function. If this verifica-
tion is ok, the provider searches for the trust level of
the requester with the searchTrust() function. If the
trust level is equal to or higher than the one specified
in the corresponding privacy policy, data are accessed.

3. searchTrust(requester id). In order to find the trust
level of requesting peers, the provider searches the
trust value locally in its trust table. If the value does
not exist, the provider asks its friends for it. Each
received trust level is weighted with the trust level of
the sending friend. Then from all the trust levels is
computed an average. This searching is recursive. If
a friend does not have the requested trust level it asks
for it to its friends. Recursion can be limited by a
predefined number of iterations.

Due to space restriction, we do not show an example of
this algorithm. To summarize, PriServ guarantees limited
collection of private data since a provider controls the access
to its private data. Thus PriServ allows to prevent malicious
access based on privacy policies.

3.3 Cost Analysis
In this section, we analyze the costs of the previous algo-
rithms in terms of number of messages. We do not analyze
the join/leave cost which is the same of Chord.

3.3.1 Key Distribution Cost
Using the DHT, we need O(logN) messages to distribute
each key. In PriServ, the number of keys is equal to the
number of entries of the private table (ept). Thus, the dis-
tribution cost is:

Cdist =

ept∑
i=1

O(logN) = O(ept ∗ logN)

The maximum value of ept is equal to the number of shared
data (nbData) multiplied by the number of purposes (nbPur-
pose), i.e., at worst, each data item is shared for all purposes:

CMaxdist = O(nbData ∗ nbPurpose ∗ logN)

We can see that the number of purposes affects the key dis-
tribution cost. Previous studies have shown that considering
10 purposes allows to cover a large number of applications
[7]. Used with 10 purposes (by data item), PriServ incurs a
small overhead. Overall, the key distribution cost remains
logarithmic.

3.3.2 Data Requesting Cost
This cost is obtained by adding the costs of the three main
functions used in the requesting algorithm.

1. search(data id, purpose). It uses the traditional DHT
get() function which requires O(logN) messages.

Csearch = O(logN)

2. retrieve(requesterid, providerid, key). The requester
contacts the provider using the DHT so the cost is
O(logN) messages. By using the IP address, commu-
nication can be direct and the cost is one message.

CRetreive = O(logN) or 1

3. searchTrust(requesterid). In this function, the provi-
der sends a message to each of its friends which in turn
do the same in a nested search. This cost depends on
the number of friends (NF) and the depth of the nested

Simulation parameters
Variable Description

n number of bits in the key/peer
N number of peers
FC number of friends

nbPurpose number of purposes
nbData number of data

Table 4: Table of parameters

search (D). We consider that each message sent has a
response so the cost is two times NF. Let NFi be the
number of friends at the ith search.

CsearchTrust =

D∑
i=1

2 ∗ NFi

= O(D ∗ N)

= O(N)

Thus, the data requesting cost is:

Crequest = Csearch + Cretrieve + CsearchTrust

= 2 ∗ O(logN) + O(N)

= O(logN) + O(N)

= O(N)

To summarize, in terms of communication messages and
compared to the traditional DHT functions, the Csearch and
Cretrieve costs are not modified. However, CsearchTrust in-
creases the data requesting cost due to the nested search.
The next section shows how this cost can be reduced. How-
ever this cost is always linear.

4. PERFORMANCE EVALUATION
This section evaluates the performance of PriServ by simu-
lation. We focus on the key distribution (Section 4.1) and
data requesting (Section 4.2) costs, and the stabilization of
the searching cost of the requester trust value (Section 4.3).

For the simulation, we use SimJava [4]. We simulate the
Chord protocol with some modifications in the put() and
get() functions. The parameters of the simulation are shown
in Table 4.

4.1 Key Distribution Cost
We measure the number of messages for distributing one
data item (nbData is equal to 1) in function of the number
of peers. Figure 1 illustrates 5 measures where the num-
ber of purposes (nbPurpose) goes from 1 to 10. Note that
with only 1 purpose, we have a system without the real no-
tion of purpose. We can observe that the distribution cost
is logarithmic and increases with the number of purposes.
We recall that having 10 purposes for each data item is an
extreme case.

Figure 1: Key distribution cost



4.2 Data Requesting Cost
We measure the number of messages for requesting one data
item in function of the number of peers. Figure 2 shows
two costs. The first cost is the number of messages to get
the provider identifier. The second cost is the sum of the
first cost and the number of messages to get the private
data. We observe that the requesting costs are logarithmic
as predicted by our cost model (see Section 3.3.2).

Figure 2: Searching cost

4.3 Stabilization of the Trust Searching Cost
We now focus on the number of messages used to search the
trust value of a requesting peer in function of the number of
its requests. Here we consider 4 friends per peer. The result
is illustrated in Figure 3. We observe that the number of
messages decreases and stabilizes after a number of searches.
This is due to the fact that the more a peer requests for data,
the more it gets known by the peers in the system.

The trust tables evolve with the number of searches. After a
while, these tables stabilize. Thus, the number of messages
for searching trust values reduces to a stable value which is
not null due to dynamicity of peers.

Figure 3: Stabilization of the trust searching cost

5. RELATED WORK
The first work that uses purposes in data access is [1]. In-
spired by the Hippocratic Oath and guided by privacy reg-
ulations, the authors propose ten principles that should be
preserved in Hippocratic databases, namely, purpose spec-
ification, consent of the donor, limited collection, limited
use, limited disclosure, limited retention, accuracy, safety,
openness and compliance. Subsequent works have proposed
solutions for Hippocratic databases. In [2], the authors pro-
pose query modification techniques and Role-Based Access
Control (RBAC) to ensure data privacy based on purposes.

In this paper, we use the Hippocratic database principles
[1], mainly, access purposes. We propose to extend P2P
functionalities with a service that uses privacy policies tables
where data and purposes are linked.

To protect data, OceanStore [5] and Piazza [10] use pub-
lic/private keys. PriServ does not use these keys because
they are insufficient to protect data privacy wrt providers
preferences. Once data are decrypted, they could be used
for different purposes and their privacy can be violated.

6. CONCLUSION
In this paper, we addressed the problem of data privacy in
DHTs. We proposed PriServ, a privacy service which pre-
vents privacy violation by prohibiting malicious data access.
PriServ uses the notion of purposes in data access control
and the notion of trust. The performance evaluation of our
approach through simulation shows that the overhead intro-
duced by PriServ is small. However, we demonstrated that
the more a peer requests data, the more it gets known by
the peers in the system and its trust level searching cost is
reduced.

7. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.

Hippocratic Databases. In Very Large Databases
(VLDB), 2002.

[2] J.-W. Byun, E. Bertino, and N. Li. Purpose Based
Access Control of Complex Data for Privacy
Protection. In ACM Symposium on Access Control
Models and Technologies (SACMAT), 2005.

[3] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and
B. Wiley. Protecting Free Expression Online with
Freenet. IEEE Internet Computing, 6(1), 2002.

[4] F. Howell and R. McNab. Simjava: a Discrete Event
Simulation Library for Java. In Society for Computer
Simulation (SCS), 1998.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski,
P. R. Eaton, D. Geels, R. Gummadi, S. C. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Y.
Zhao. OceanStore: An Architecture for Global-Scale
Persistent Storage. In Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2000.

[6] K. LeFevre, R. Agrawal, V. Ercegovac,
R. Ramakrishnan, Y. Xu, and D. J. DeWitt. Limiting
Disclosure in Hippocratic Databases. In Very Large
Databases (VLDB), 2004.

[7] 1.0 P3P Purposes of Data Collection Elements.
http://p3pwriter.com/LRN 041.asp.

[8] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In
ACM/IFIP/USENIX Middleware Conference, 2001.

[9] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In ACM
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication (SIGCOMM), 2001.

[10] I. Tatarinov, Z. G. Ives, J. Madhavan, A. Y. Halevy,
D. Suciu, N. N. Dalvi, X. Dong, Y. Kadiyska,
G. Miklau, and P. Mork. The Piazza Peer Data
Management Project. ACM SIGMOD Record, 32(3),
2003.

[11] A. Westin. Privacy and Freedom. In Atheneum, New
York, 1967.


