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ABSTRACT
In this paper we consider the on-line max and min query
auditing problem: given a private association between fields
in a data set, a sequence of max and min queries that have
already been posed about the data, their corresponding an-
swers and a new query, deny the answer if a private informa-
tion is inferred or give the true answer otherwise. We give
a probabilistic definition of privacy and demonstrate that
max and min queries, without “no duplicates”assumption,
can be audited by means of a Bayesian network. Moreover,
we show how our auditing approach is able to manage user
prior-knowledge.
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1. INTRODUCTION
The protection of privacy in statistical database (SDB) has
been a problem of growing concern in recent years [5]. The
goal is to provide statistical information about groups of
individuals while protecting their privacy; only statistical
information must be available and no sequence of queries
should provide protected information about the individuals.
If an user is able to infer protected information, then the
SDB is compromised.
A number of disclosure control methods to protect a SDB
have been proposed in the literature (see [1] for a survey);
one of these is auditing [3], [4], [8], [9], [10], [14]. Two kinds
of auditing have been studied:

1. On-line auditing. The queries are answered one by one
in sequence and the auditor has to determine whether
the SDB is compromised when answering a new query;

2. Off-line auditing. Given a set of queries {q1, ..., qt}, the
auditor has to identify a maximum subset of queries
that can be answered simultaneously without compro-
mising the SDB.

In this paper we consider the first case, in particular the
on-line max and min query auditing over real-valued data.
Consider for example, a company database containing salaries
of employees. A user may want to determine the max or a
min salary of the employees in a subset of records in the
database. She cannot, however, be allowed to glean the
salary of any one employee in particular.
In an on-line max and min auditing problem, given a set
of max and min queries {q1, q2, ...qt−1}, the corresponding
answers {m1, m2, ...mt−1} and the current query qt, the au-
ditor denies the answer to qt if and only if a privacy breach
occurs.
In [11] the authors deal with the max and min auditing, but
the combinations of max and min queries in presence of du-
plicated sensitive values remains an open problem.
The original contribution of this paper is threefold:

1. to extend the classical notion of privacy to a proba-
bilistic notion;

2. to show as to deal with the on-line max and min au-
diting, without “no duplicates”assumption, by means
of a Bayesian network;

3. to manage user prior-knowledge in addition to the past
history of user queries.

The rest of the paper is organized as follows: section 2
places our work in the context of previous research; section 3
presents a probabilistic approach for on-line max auditing;
section 4 introduces the Bayesian network as a graphical
model to deal with uncertainty and shows how a Bayesian
network is able to deal with the on-line max and min au-
diting problem; section 5 outlines how our model deals with
prior-knowledge; section 6 discusses conclusions and future
research.

2. BACKGROUND
In this section we provide the notation that we will use in
the sequel and place our work in the context of previous
research.

2.1 Notation
We assume that:

• T is a table with n records;



• K = {1, 2, ..., n};

• X and Y are two fields of T such that the elements of
X represented by xi are distinct among them (each xi

identifies uniquely a subject) and the elements of Y ,
represented by yi, are real numbers;

• the sensitive field Y has r distinct values (r ≤ n);

• the private information takes the form of an associa-
tion, (xi, yi) ⊆ X × Y , that is the pair of values in the
same tuple;

• S = {s1, ..., sr} is the set of distinct values of Y with
si < si+1, ∀i ∈ {1, ..., r − 1};

• S0 = {s0, s1, ..., sr, sr+1}, with si ∈ S,∀i ∈ {1, ..., r},
s0 a real number such that s0 < s1 and sr+1 a real
number such that sr+1 > sr;

• a l-query q is a subset of K, that is q = {i1, ...il} ⊆ K.
Let us assume that ij < ij+1 ∀j ∈ {1, ..., l − 1}; it is
not restrictive, for example q1 = {1, 2} and q2 = {2, 1}
represent the same query. In this paper, we use the
terms query and l-query interchangeably;

• the answer corresponding to a max query q is m =
max{yij

|ij ∈ q};

• the answer corresponding to a min query q is m =
min{yij

|ij ∈ q};

• l = |q| > 1, because if q = {j}, clearly, yj is breached
irrespective of the value of m and the association (xj , m)
is disclosed.

2.2 Related work
Given a table T, the private associations (xj , yj), a set of
max and min queries {q1, ..., qt}, and the set of the corre-
sponding answers {m1, ..., mt}, in [9] and in [11] the authors
define, for each element yj , the upper bound µj as follows:

Definition 1. ∀yj , µj = min{mk|j ∈ qk with qk a max
query} is the minimum over the answers to the max queries
containing j.

In other words, µj is the best possible upper bound for yj

that can be obtained from the answers to the max queries.

Similarly, the lower bound λj is defined as follows:

Definition 2. ∀yj , λj = max{mk|j ∈ qk with qk a min
query} is the maximum over the answers to the min queries
containing j.

Moreover, if qk is a max query, then an extreme element for
qk is define as follows:

Definition 3. j is an extreme element for the query qk

if j ∈ qk and µj = mk.

Instead, if qk is a min query, then an extreme element for qk

is define as follows:

Definition 4. j is an extreme element for the query qk

if j ∈ qk and λj = mk.

In [9], the authors demonstrate, for the on-line max auditing,
the following theorem:

Theorem 1. A value yj is uniquely determined if and
only if there exists a query qk for which j is the only extreme
element.

This means that the private association (xj , yj) is disclosed;
this theorem is valid also for the on-line min auditing.

Example 1. Let q1 = {2, 3, 4} a max query. If the user
submits the max query q2 = {1, 2, 3, 4, 5} and m1 < m2, then
the auditor can answer, because q1 has 3 extreme elements,
that are 2, 3, 4 and q2 has 2 extreme elements, that are 1
and 5.

Example 2. Let q1 = {1, 2, 3, 4} a max query. If the user
submits the max query q2 = {1, 2, 3, 4, 5} and m1 < m2,
then the auditor must deny the answer to q2, because q1 has
4 extreme elements, that are 1, 2, 3, 4 and q2 has only an
extreme element, that is 5.

Example 3. Let q1 = {1, 2, 3} a min query. If the user
submits the min query q2 = {1, 4} and m1 > m2, then the
auditor must deny the answer to q2, because q1 has 3 ex-
treme elements, that are 1, 2, 3 and q2 has only an extreme
element, that is 4.

Focusing on max auditing, reference [8] proposes an en-
hanced approach that considers the implicit delivery of in-
formation that derives from denying the answer to a query.

In [11] the authors deal with on-line max and min auditing
with “no duplicates”assumption. They provide the following
theorem:

Theorem 2. Given a set of queries, {q1, ..., qt} and the
corresponding answers {m1, ..., mt}, the database is secure
if and only if every max query or min query has more than
one extreme element and does not exist any max query, qi,
and min query qj such that mi = mj.

Example 4. Let q1 = {2, 3} a max query. If the user
submits the min query q2 = {1, 3} and m = m1 = m2, then
the auditor must deny the answer to q2, because the user
discloses the association (x3, m).

The question of auditing combination of max and min queries
in presence of duplicated remains, for the authors, an open
problem, because, in their approach, the duplicates make the
problem harder. To see why duplicated make the problem
harder, we consider the following example:



Example 5. Let q1 = {3, 5} a max query and m1 = 98,
q2 = {4, 6} a max query and m2 = 98. Now, if the auditor
gives the answer to min query q3 = {5, 6} with m3 = 96, then
in addition to the previous information, the user also knows
that max{y3, y4} must be 98 since one of y5 or y6 has to
be 96. Thus, in addition to examining extreme elements for
the query that have actually been posed, the auditor needs to
examine extreme elements for such inferred queries as well,
and there can be a blow up in the number of queries that
need to be maintained. This does not happen in the absence
of duplicates, since the first two queries could never have the
same answer.

2.3 Problem statement
We consider the following definition of probabilistic compro-
mise:

Definition 5. A privacy breach occurs if and only if a
private association is disclosed with probability greater than
a given tolerance probability tol. If a private association is
disclosed with tol = 1, then the SDB is full compromised.

In order to show how the probabilistic definition is more
secure than the classical one, we give the following example:

Example 6. Given y1 = 100 and qi, i ∈ {1, ..., 6} a max
query, with q1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} and m1 = 100, q2 =
{2, 3, 4} and m2 = 99, q3 = {5, 6, 7, 13} and m3 = 96,
q4 = {1, 10} and m4 = 100, q5 = {1, 11} and m5 = 100,
q6 = {7, 8} and m6 = 94. If the auditor answers the se-
quence of queries {q1, q2, q3, q4, q5, q6}, then the user knows
that y1 = 100 with probability equal to 0.8889. Even if in
classical definition of privacy, a breach does not occur, be-
cause each query has at least two extreme elements, if we
select tol = 0.87 then the auditor must deny the answer
m6 because the private association (x1, 100) is disclosed with
probability equal to 0.8889. In section 4.2, we will show as
our model is able to compute this probability.

With our model, we will be able to answer the following
questions:

• What is the probability that an element yj is equal to
µj after a sequence of queries?

• What is the probability that an element yj is equal to
λj after a sequence of queries?

• What are the probabilistic dependencies among the sen-
sitive values after a sequence of queries?

• How we can deal with the blow up in the number of
queries that need to be maintained in an on-line max
and min auditing? For example, how to represent that
max{y3, y4} must be 98 in the example 5, without main-
taining the additional query?

• How we can model the user knowledge after a sequence
of queries?

• How we can add user prior-knowledge? For example,
what happens, in example 6, if the user knows that,
with probability equal to 0.8, y1 ≥ 100?

3. A PROBABILISTIC APPROACH
In this section we deal with max queries; the min case is
analogous.
Let q = {i1, ..., il} a l -query and m = max{yi1 , ..., yil

} the
corresponding answer, if the auditor gives the answer m then
the user knows that:

yij
≤ m ∀ij ∈ q (1)

Pr(OR(yi1 , ..., yil
) = m) = 1 (2)

The relation in (2) ensures that ∃j ∈ {1, ..., l} such that
yij

= m.

Example 7. Let q = {1, 3} and m = max{y1, y3} = 8,
then the user knows that it is verified one of the following
cases: y1 = 8 and y3 = 8; y1 < 8 and y3 = 8; y1 = 8
and y3 < 8. Since it is likely that the user has not prior
knowledge on the domain of the sensitive field Y , we assume
that each of three cases is equally probable.
Then

Pr(yi = 8|m = 8) =
2

3
, ∀i ∈ {1, 3}

Pr(yi < 8|m = 8) =
1

3
, ∀i ∈ {1, 3}

Moreover

Pr(y1 = 8|m = 8, y3 = 8) =
1

2

Pr(y1 < 8|m = 8, y3 = 8) =
1

2

Pr(y3 = 8|m = 8, y1 = 8) =
1

2

Pr(y3 < 8|m = 8, y1 = 8) =
1

2

and

Pr(y1 = 8|m = 8, y3 < 8) = 1

Pr(y3 = 8|m = 8, y1 < 8) = 1

Given a l -query q and the corresponding answer m, the fol-
lowing propositions compute the probability that yj is equal
to m, for each j ∈ q, the probabilistic dependencies among
the sensitive values in q and consider user prior-knowledge.

Proposition 1. Let q = {i1, ..., il} ⊆ K, then, ∀j ∈ q:

Pr(yj = m|max{yi1 , ..., yil
} = m) =

2l−1

2l − 1
(3)

Pr(yj < m|max{yi1 , ..., yil
} = m) =

2l−1 − 1

2l − 1
(4)

and

lim
l→∞

Pr(yj = m|max{yi1 , ..., yil
} = m) =

1

2
(5)

lim
l→∞

Pr(yj < m|max{yi1 , ..., yil
} = m) =

1

2
(6)

Proposition 2. Given q = {i1, ..., il} such that mq =
max{yi1 , ..., yil

} = m, given q′ ⊂ q , with l′ = |q′| > 0 such



that mq′ = max{ys|s ∈ q′} = m, then, ∀j ∈ q \ q′:

Pr(yj = m|mq = m, mq′ = m) =
1

2

Pr(yj < m|mq = m, mq′ = m) =
1

2

Example 8. Let q = {1, 2, 3, 4, 5}, let mq=max{y1, ..., y5}
=m, then if the user knows that mq′ = max{y4, y5} = m
then Pr(yj = m|mq = m, mq′ = m) = 1

2
, for j = 1, 2, 3.

Proposition 3. Given q = {i1, ..., il} such that mq =
max{yi1 , ..., yil

} = m, given q′′ ⊂ q , with l′′ = |q′′| > 0
such that mq′′ = max{ys|s ∈ q′′} < m, then, ∀j ∈ q \ q′′:

Pr(yj = m|mq = m,mq′′ < m) =
2l−(l′′+1)

2l−l′′ − 1

Pr(yj < m|mq = m,mq′′ < m) =
2l−(l′′+1) − 1

2l−l′′ − 1

Example 9. Let q = {1, 2, 3, 4, 5}, if the user knows that
mq = max{y1, ..., y5} = m and mq′′ = max{y2, y3, y4} < m,
then Pr(yi = m|mq = m, mq′′ < m) = 2

3
, for i = 1, 5.

Instead, if mq′′ = max{y1, y2, y3, y4} < m then Pr(y5 =
m|mq = m, mq′′ < m) = 1

Remark 1. In propositions 2 and 3 max{ys|s ∈ q′} = m

and respectively max{ys|s ∈ q′′} < m represent user prior-
knowledge. In particular if we consider q = q1 and q′ = q2

(resp. q = q1 and q′′ = q2) the equations in proposition 2
(resp. in proposition 3) represent the probabilities after the
sequence of queries {q1, q2}.

4. A BAYESIAN APPROACH
In this section we present the Bayesian network as a graphi-
cal model to deal with uncertainty and show how a Bayesian
network is able to deal with the on-line max auditing prob-
lem and the on-line max and min auditing problem, also in
presence of duplicated sensitive values.

4.1 Bayesian network
A Bayesian network (BN) is a probabilistic graphical model
that represents a set of variables and their probabilistic de-
pendencies [13]. A BN, also called belief net, is a directed
acyclic graph (DAG) which consists of nodes to represent
variables and arcs to represent dependencies between vari-
ables. Arcs or links also represent causal influences among
the variables. The strength of an influence between vari-
ables is represented by the conditional probabilities which
are summarized in a conditional probability table (CPT). If
there is an arc from node A to another node B, A is called a
parent of B, and B is a child of A. The set of parent nodes of
a node Xi is denoted parents(Xi). The size of the CPT of a
node Xi depends on the number s of its states, the number
n of parents(Xi), and the number sj of parent states, in the
following way:

size(CPT ) = s ·
n

∏

j=1

sj (7)

For every possible combination of parent states, there is an
entry listed in the CPT. Notice that for a large number of
parents the CPT will expand drastically. A directed acyclic
graph is a BN relative to a set of variables if the joint dis-
tribution of the node values can be written as the product
of the local distributions of each node and its parents:

Pr(X1, ...Xn) =

n
∏

i=1

Pr(Xi|parents(Xi))

If node Xi has no parents, its local probability distribution
is said to be unconditional, otherwise it is conditional. If the
value of a node is observed, then the node is said to be an
evidence node.

4.2 Max auditing
In this section we build a BN able to deal with on-line max
auditing problem. We represent the variable yi, for i ∈ K,
and a max query, by means of a node in the BN. The model
is an optimized version of the BN shown in [2].
Let K = {1, 2, ..., n} then |P (K)| = 2n. Because the number
of l -query from the set K is the binomial coefficient Cl

n =
(

n

l

)

= n!
l!(n−l)!

and because we consider only l -query with

l > 1 then the total number of queries on K is:
(

n
2

)

+ ... +

(

n
n − 1

)

+

(

n
n

)

= 2n − (1 + n) (8)

Therefore, because the number of nodes grows in exponential
way when n increases (if we encode all max queries and
variables yi, then it needs 2n − 1 nodes), we incrementally
build the BN at run-time.
Given a l -query q = {i1, ...il}, if we build the node encoding
q with l parents {yi1 , ...yil

}, then, by equation (7), CPT
size grows exponentially, thus we decompose the l -ary max
operator into a set of binary max operators and we build
the CPTs with a minimum number of states.

We have implemented our BN model using the Hugin engine
and its Java API [7].
Given a new query qt, in order to represent the user knowl-
edge, we consider the following phases:

1. if the node encoding the max query qt does not exist
then we realize the temporal transformation, described
in section 4.2.1, optimizing CPT size, as discussed in
section 4.2.2;

2. we insert evidence on node encoding the max query;

3. we check whether a probabilistic compromise occurs or
not.

In this section we assume that:

• Z = {z1, ..., zn} is a permutation of Y = {y1, ..., yn}
such that zj ≥ zj+1, ∀j ∈ {1, ..., n − 1};

• given S0 = {s0, s1, ..., sr, sr+1} defined in section 2.1,
and a l -query q = {i1, ..., il}, with ij < ij+1 ∀j ∈
{1, ..., l − 1}, then ∃k ∈ {1, ..., r} such that m= max=
{zi1 , ..., zil

}=zi1 = sk;



Figure 1: Temporal transformation for a max query.

Figure 2: Sequence of temporal transformations.

• because each node encoding a l -query is a binary max
operator, p1 and p2 are its parents.

4.2.1 Decomposition of a max query
The size of a conditional distribution that encodes the max
operator can be reduced when the l -ary max operator is
decomposed into a set of binary max operators. Two well
known approaches to the decomposition are: parent divorc-
ing [12] and temporal transformation [6].
Parent divorcing constructs a binary tree in which each node
encodes the binary operator. Temporal transformation con-
structs a linear decomposition tree in which each node en-
codes the binary operator. In order to optimize our BN
we use temporal transformation. For example, the BN re-
sulting from temporal decomposition for the query q1 =
{1, 2, 3, 4, 5} is shown in figure 1. Each max node in the
transformation has size equal to r3, where r is the domain
size, in our context, r is the number of distinct values of
sensitive date. In the general case of a l -query, l-1 max
nodes are needed. Inserting evidence on node encoding the
l -query, we can compute the probability of the correspond-
ing l nodes in the first level.
If the auditor answers the query {4, 5}, then the sequence of
temporal transformations is shown in figure 2.
Therefore, in the first level of BN there are the nodes en-
coding the variables zj , and in the level l, with l > 1, there
are the nodes encoding the l -queries. We build the BN at
run-time: given the current query qt, we execute a tempo-
ral transformation if and only if the privacy is not breached
and the answer to qt gives new information. If no query is
answered then the BN has not nodes.

4.2.2 Optimizing CPT size
In this section we optimize the model by building CPT with
minimum number of states.
Given {q1, ..., qt−1} a sequence of queries already posed, {m1,

..., mt−1} the corresponding answer and a new query qt with

answer mt, for each j in qt, one of the two cases is verified:

1. ∃ i ∈ {1, ..., t − 1} | j ∈ qi and µj = mi (j is extreme
element for qi),

2. 6 ∃ a max query qi with i ∈ {1, ..., t − 1}, | j ∈ qi.

In the case 1, if µj , related to {q1, ..., qt−1}, is such that
µj > mt, and in the case 2, we set µj = mt.
Therefore, for each zj in the BN, we have to represent the
following probabilities:

Pr(zj < µj) (9)

Pr(zj = µj). (10)

We build the nodes in the BN in the following way:

NODE ENCODING zj . The node encoding zj has two
states zs1 and zs2 with zs1 < zs2 = µj . Therefore, un-
conditional distribution table has size equal to 2. Since we
assume that the user has not knowledge about the domain
of the sensitive field, the prior distribution is ( 1

2
, 1

2
). In our

implementation we can set zs1 = s0. Obviously, zs2 is up-
dated after a query qt if µj , related to {q1, ..., qt−1}, is such
that µj > mt.

NODE ENCODING A MAX QUERY. Given qt = {i1, ..., il}
the current query, mt=max {zi1 , ..., zil

} = zi1 = sk, max
Node the node encoding the query, then maxNode has three
states ms1, ms2, and ms3, with ms1 < ms2 = sk < ms3.
Because zj ≥ zj+1 ∀j ∈ {1, ..., n − 1}, also each node, in the
corresponding temporal transformation, has the same states
as maxNode.
Because equation (7), we have that:

• the conditional distribution table of a node encoding
a 2-query has size equal to 3(2 · 2) = 12;

• the conditional distribution table of a node encoding
a l -query, with l > 2, has size equal to 3(3 · 2) = 18.

In our implementation, we set ms1 = s0, ms3 = sr+1, and
define the max expression as follows:
if(and(p1 < sk, p2 < sk)) Distribution(1, 0, 0);
else if(or(p1 ≤ sk, p2 ≤ sk)) Distribution(0, 1, 0);
else Distribution(0, 0, 1);
Inserting evidence on maxNode in the following way:

Pr(maxNode = sk) = 1 (11)

the BN is able to compute the probability in (9) and (10),
for each zj in the BN.

Example 10. Given the table 1, we set s0 = 0, if the
auditor answers q1 = {1, 2, 3, 4, 5} and q2 = {4, 5} then the
BN is shown in figure 3, and for j ∈ {1, 2, 3}, according to
proposition 3,

Pr(zj = s0) = Pr(zj < 9) =
3

7

Pr(zj = 9) =
4

7



Table 1: n=5, r=4.

X Z
x1 9
x2 8
x3 8
x4 5
x5 4

Figure 3: q1 = {1, 2, 3, 4, 5} and q2 = {4, 5}.

and, according to proposition 1, for j ∈ {4, 5},

Pr(zj = s0) = Pr(zj < 5) =
1

3

Pr(zj = 5) =
2

3

Remark 2. ∀zj in the BN, let A = Pr(zj < µj) and
B = Pr(zj = µj), then we can compute the entropy of zj

as:

H = A · log2
1

A
+ B · log2

1

B
. (12)

Remark 3. With our model, we are able to compute the
probability of the private association (x1, 100) in the example
6 of the section 2.3. See Figure 4.

4.3 Max and Min auditing
Starting from BN model shown in section 4.2, in this section,
we build a BN able to deal with the on-line max and min
auditing also in presence of duplicated sensitive values; our
model resolves the problem of the blow up of the queries
that need to be maintained shown in section 2.2.
In this section we assume that:

• Z = {z1, ..., zn} is a permutation of Y = {y1, ..., yn}
such that zj ≥ zj+1, ∀j ∈ {1, ..., n − 1};

• given S0 = {s0, s1, ..., sr, sr+1} defined in section 2.1,
and a max l -query q = {i1, ..., il}, with ij < ij+1 ∀j ∈
{1, ..., l − 1}, then ∃k ∈ {1, ..., r} such that m= max
{zi1 , ..., zil

}=zi1 = sk;

Figure 4: Sequence of max queries

Table 2: n=7, r=5.

X Z
x1 100
x2 99
x3 98
x4 98
x5 96
x6 96
x7 94

• given a min l -query q = {i1, ..., il}, with ij < ij+1 ∀j ∈
{1, ..., l − 1}, then ∃k ∈ {1, ..., r} such that m= min
{zi1 , ..., zil

}=zil
= sk;

• because each node encoding a l -query is a binary max
or a min operator, p1 and p2 are its parents.

Given {q1, ..., qt−1} a sequence of max and min queries al-
ready posed, {m1, ..., mt−1} the corresponding answer and
a new max or min query qt with answer mt, for each j in qt,
one of the four cases is verified:

1. ∃ i ∈ {1, ..., t − 1} and qi a max query | j ∈ qi and
µj = mi,
6 ∃ a min query qk with k ∈ {1, ..., t − 1}, | j ∈ qk;

2. 6 ∃ a max query qi with i ∈ {1, ..., t − 1}, | j ∈ qi,
∃ k ∈ {1, ..., t − 1} and qk a min query | j ∈ qk and
λj = mk;

3. ∃ i ∈ {1, ..., t − 1} and qi a max query | j ∈ qi and
µj = mi,
∃ k ∈ {1, ..., t − 1} and qk a min query | j ∈ qk and
λj = mk;

4. 6 ∃ a max query qi | j ∈ qi,
6 ∃ a min query qk | j ∈ qk.

We build the nodes in the BN in the following way:

NODE ENCODING zj . We suppose that qt is a max query;
if it is a min query the reasoning is analogous. We build the
node dynamically.
In the case 1 and 4, we build the node encoding zj with only
two states zs1 and zs2 in the same way as the on-line max



Figure 5: Not blow up of queries.

Figure 6: Add max query {1, 2}.

auditing problem.
In the case 2 and 3, we build the node encoding zj with three
states zs1, zs2 and zs3, with λj = zs1 < zs2 < zs3 = µj ,
where λj and µj are the lower bound and the upper bound
after the sequence of query {q1, ..., qt}. Moreover, P (zs2) =
Pr(λj < zj < µj). Since we assume that the user has not
knowledge about the domain of the sensitive field, the prior
distribution of this node is ( 1

3
, 1

3
, 1

3
). In our implementation

we can set zs2 = zs1+zs3

2
.

NODE ENCODING A MAX QUERY. It is equal to a max
node in on-line max auditing, but its CPT size is equal to
3 · (sizep1

· sizep2
), where sizep1

and sizep2
are the number

of states of the parents and they can be 2 or 3.

NODE ENCODING A MIN QUERY. We build the node in
analogous way to a node encoding a max query; we define
the min expression as follows:
if(and(p1 > sk, p2 > sk)) Distribution(0, 0, 1);
else if(or(p1 ≥ sk, p2 ≥ sk)) Distribution(0, 1, 0);
else Distribution(1, 0, 0); In the following example, we con-
sider the table 2, the queries in example 5 of section 2.2 and
we see as our model deals with “duplicated values” in an
efficient way.

Example 11. Set s0 = s1 − 1 = 93 and sr+1 = sr + 1 =
101, given the max queries q1 = {3, 5} and q2 = {4, 6}, and
the min query q3 = {5, 6}, then the corresponding BN is
shown in figure 5. For j ∈ {3, 4}, because zs1 = s0 = 93,
it means that the user knows that Pr(zj < 98) = 0.1429 and
Pr(zj = 98) = 0.8571. For j ∈ {5, 6}, the nodes have three
states because the variables z5 and z6 are present in min and
max queries. The user knows that Pr(zj = 96) = 0.5714,
Pr(96 < zj < 98) = 0.1429 and Pr(zj = 98) = 0.2857. Our
model is able to infer that max{z3, z4} is equal to 98; in fact
we can see that z3 ≤ 98, z4 ≤ 98 and if we insert evidence
on first state of z3, that is z3 < 98 (resp. z4 < 98), then the
probability of the second state of z4, that is z4 = 98 (resp.
z3 = 98), is equal to 1.
Moreover, if the user submits the max query q4 = {3, 4} then

Figure 7: Add min query {1, 2}.

Figure 8: Add max query {1, 6, 7}.

the corresponding max node has entropy equal to 0; thus the
node is not added to BN.
Moreover, if the tolerance tol is such that tol < 0.8571, then
the auditor must deny the answer to q3.

Remark 4. By example 11, we can see that our model
is able to manage efficiently inferred queries, in addition to
posed queries, without maintaining additional nodes. More-
over, if the information is already present in the model, then
the corresponding max or min node has entropy equal to zero
and the probabilities of the nodes zj not change; therefore we
do not add the query node.

Remark 5. Similarly to max auditing, we can compute
the entropy for each node zj in the BN.

In order to better understand the combined on-line max and
min auditing, we continue the example 11.

Example 12. If the auditor gives the answer to max query
{1, 2} then the BN is update as in figure 6; Pr(zi < 100) =
1
3
, Pr(zi = 100) = 2

3
, ∀i ∈ {1, 2}.

If the auditor gives the answer to min query {1, 2} then the
BN is update as in figure 7; Pr(zi = 99) = 1

2
, Pr(99 < zi <

100) = 0 and Pr(zi = 100) = 1
2
, ∀i ∈ {1, 2}.

If the user submits the max query {2, 3}, which answer is
equal to 99, then the auditor must deny the answer, because
it is disclosed that z1 = 100 and z2 = 99 (the node encoding
z3 does not change because µ3 = 98 < 99, the node encoding
z2 has only a state equal to 99 and the node encoding z1 is
such that Pr(z1 = 100) = 1); therefore the BN remains as
figure 7. If the user submits max query {1, 6, 7}, which an-
swer is equal to 100, then we add the nodes encoding the vari-
able z7, max queries {1, 6} and {1, 6, 7}, and insert evidence
only in the node {1, 6, 7}(see figure 8). The node z6 does not



Figure 9: Inserting evidence on node encoding

max{z1, z6} the privacy is breached.

Figure 10: BN after a sequence of queries.

change, because µ6 = 98 < 100; node encoding z1 is such
that Pr(zi = 99) = 0.3333, Pr(zi = 100) = 0.6666; node
encoding z7 is such that Pr(z7 < 100) = 0.3333, Pr(z7 =
100) = 0.6666. We can see that, also in the node encoding
z2 the probabilities change. If the user submits max query
{1, 6}, the corresponding node already exists, then we insert
only evidence on the node (see figure 9), but because the pri-
vacy is breached, we can not update the BN, it remains as
in figure 8 and the auditor must deny the answer.

5. DEALING WITH PRIOR-KNOWLEDGE
An user can learn something about the state of the BN not
only with a sequence of queries, but also by prior and back-
ground knowledge. In this section we show as our model is
able to capture user prior-knowledge. We consider two kind
of user prior-knowledge:

1. prior-knowledge represented by likelihood on one or
more nodes in the model;

2. prior-knowledge that derives from integration with an
other knowledge domain.

5.1 Likelihood
Adding likelihood is what we do when the user learns some-
thing about the state of the BN which can be entered into a
node. The simplest form is the evidence, that is, the prob-
ability that a state is 1 while the probability of each other
states is 0. In general adding likelihood we can choose a
value in [0, 1] and take this value as probability of a state.
Obviously, the sum of all probabilities is necessarily 1.

Example 13. We suppose that the BN is in the state of
figure 10, therefore the user knows that max{z1, z2} = 100.
Moreover we suppose that z1 represents Alice’s salary, z2

Bob’s salary and that the user is a Bob’s friend. If the user
knows that it is very unlikely that Bob’s salary is equal to
100, exactly that Pr(z2 = 100) = 0.1 and Pr(z2 < 100) =

Figure 11: BN after a sequence of queries with prior-

knowledge Pr(z2 < 100) = 0.9.

Figure 12: BN after a sequence of queries with prior-

knowledge Pr(z1 > z2) = 0.8.

0.9, then we insert this likelihood on node z2. Thus, the
probabilities in BN change as in figure 11; in particular
Pr(z1 = 100) = 0.9091 and if tol = 0.9 then the privacy
is breached.

5.2 Integration with other domains
The BNs are able to manage uncertainty between the differ-
ent knowledge components, including the interactions among
the various domains of uncertainty. We consider the follow-
ing example:

Example 14. If the BN is in the state of figure 10 and
the user knows that it is very likely that Alice’s Salary is
greater than Bob’s Salary, more exactly that Pr(z1 > z2) =
0.8, then the probabilities in BN change as in figure 12. If
tol < 0.9 then the privacy is breached.

6. CONCLUSIONS AND FUTURE WORK
We have introduced a novel definition of privacy that ex-
tends the classical notion and we have demonstrate that max
and min queries can be audited, without “no duplicates” as-
sumption, by means of a BN. We have shown as background
knowledge may compromise a SDB and how our model is
able to manage user prior-knowledge in addition to past his-
tory of user queries. The goal of our future work is threefold:

• to consider the case in which the probability distribu-
tion of the sensitive field is public, and in particular
is known to the user, therefore we will integrate this
domain in our model;

• to use a BN as a unifying framework including the
interactions among the various domains of uncertainty;

• to include combinations of different statistical queries.
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